

Fig. 1 MA処理により得られた遷移金属シリサイド/ケイ 素コンポジット粉末のX線回折パターン。

Fig. 2 GD 法で作製した Si 単体厚膜電極の (a) 第1サイクル の充放電曲線, および (b) 放電容量の充放電サイクル依存性⁵⁾.

Fig. 3 種々の遷移金属シリサイド/ケイ素コンポジット厚膜 電極の第1サイクルの充放電曲線.

Fig. 4 シリサイド/ケイ素コンポジット厚膜電極の充放電サイクル性能.

Fig. 5 LaSi₂:Si の重量比を変えた LaSi₂/Si コンポジット厚膜電極の (a) 充放電サイクル性能, および (b) クーロン効率の推移¹⁶⁾.

Fig. 6 種々の遷移金属シリサイド単独電極の初期充放電曲線.

Table 1 種々の遷移金属シリサイドに関する溶解エンタルピー変化²⁶⁾, およびシリサイド単独電極の初期放電容量のまとめ.比較として, Fe -Sn 合金に関するデータも併せて示す²⁷⁾.

	溶解エンタルピー変化 / kJ mol ⁻¹				初期 / r	初期放電容量 / mA h g ⁻¹		
LaSi ₂	La–Si -232	高	La–Li +24			55		
VSi ₂	V–Si -125		V–Li +143	Si–Li		50		
NiSi ₂	Ni–Si -92	安定	性 Ni–Li 牛3	-49		120		
FeSi ₂	Fe–Si -71		Fe–Li +95			30		
FeSn ₂	Fe–Sn +45		Fe–Li +95	Fe–Li (Sn–Li +95 (-70) 500				

Fig. 7 シリサイド単独電極の充放電サイクル数にともなう 放電容量の推移.

Fig. 8 (a) Si 単独電極および (b) LaSi₂/Si コンポジット電極に対する CV 測定の結果.

Fig. 9 種々のシリサイド粒子の参考破壊強度の比較.

