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Abstract 

Introduction: We investigated the ability of N-hexacosanol, a neurotrophic substance, 

to reverse diabetes-induced cystopathy in the rat.   

Mater ials and methods: Eight-week-old male SD rats were divided randomly into four 

age-matched groups.  In three of these groups, diabetes was induced by streptozotocin 

(50 mg/kg i.p.).  Four weeks after the induction of diabetes, the three groups received 

another four weeks of treatment by vehicle or N-hexacosanol (2, or 8 mg/kg, i.p. every 

day).  The serum glucose and serum insulin levels were determined, and the bladder 

functions were estimated by voiding behavior studies, cystometric studies, and 

functional studies using carbachol and KCl. The participation levels of M2 and M3

Results: Treatment with N-hexacosanol did not alter the rats’ diabetic status, but did 

significantly improve the diabetes-induced dysfunction of the detrusor in a 

dose-dependent manner.  Furthermore, N-hexacosanol significantly reversed the 

up-regulation of muscarinic m

 

receptors were investigated by real-time PCR and immunohistochemical staining.  

Typical H&E staining was also performed.   

2 and m3 receptor mRNAs in STZ-diabetic rats.  

Muscarinic M2 and M3 receptors were localized in detrusor and urothelium, and there 

was no difference between any of the groups in the distribution of muscarinic M2 and 

M3

Conclusion: These results indicate that N-hexacosanol has a beneficial effect on 

hyperreactivity in the diabetic detrusor by ameliorating over-expression of muscarinic 

m

 receptors.   

2 and m3 receptor mRNAs.
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Introduction  

It has been reported that 26-78% of patients with diabetes mellitus have disease-induced 

dysfunction of the lower urinary tract, and diabetic cystopathy is a common 

complication of diabetes mellitus [1- 3].  These urinary tract dysfunctions are induced 

primarily by diabetes-associated neuropathy [1- 3].  Several rodent models have been 

used to investigate type I diabetes [4].  Streptozotocin (STZ), which causes sub-total 

pancreatic islet necrosis, has been widely used to induce insulin-dependent diabetic 

states in experimental animals.  Residual insulin production enables these rats to 

survive without insulin supplementation for extended periods of time.  Thus, 

STZ-induced diabetic rats are widely used to investigate type I diabetes [4].  These rats 

show hyperglycemia, hypoinsulinemia, and inhibited weight gain during feeding.  

Furthermore, significant increases in bladder weight and residual urine volume, 

hypercontractility to carbachol, and up-regulation of muscarinic receptors in the bladder 

dome have been reported in this diabetic model [4-8]. 

The tropical plant Hygrophilia erecta Hochr. has been shown to contain some 

cyclohexenonic long-chain fatty alcohols (N-hexacosanols).  N-hexacosanols have 

neurotrophic effects on cultured neurons from the cerebral cortex. [9, 10].  As 
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N-hexacosanol has a neurotrophic effect, we have reported that N-hexacosanol exerts 

beneficial effects on peripheral neuropathy and cystopathy in streptozotocin-induced 

diabetic rats, and that N-hexacosanol treatment can normalize diabetes-induced 

alterations of motor sciatic nerve conduction [7, 8, 11].  However, the detailed 

mechanisms underlying the action of diabetes-induced cystopathy by this drug remain 

unclear.  In this study, we tried to investigate N-hexacosanol’s ability to reverse 

diabetes-induced cystopathy and the possible mechanism underlying this ability in 

STZ-induced diabetic rats.
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Mater ials and Methods 

Animal model 

All animal experiments were performed in accordance with the guidelines established 

by the Tottori University Committee for Animal Experimentation.  Diabetes was 

induced in 8-week-old male Sprague-Dawley rats (SLC, Shizuoka, Japan) by 

administering an intraperitoneal injection of streptozotocin (STZ) (50 mg/kg) dissolved 

in 0.1 M citrate-phosphate buffer (pH 4.2) [8, 11, 12].  The rats were divided randomly 

into four age-matched groups (n=6-8).  One group was a non-diabetic control (group 

A), and was administered 0.1 M citrate-phosphate buffer (pH 4.2) without 

N-hexacosanol; diabetes was induced in the three others.  Four weeks after the 

induction of diabetes, animals were treated for another four weeks with a vehicle 

(groups A and B) or with N-hexacosanol at a daily dose of 2 or 8 mg/kg for another four 

weeks (groups C and D, respectively).  Two days after the injection of STZ or the 

vehicle, the induction of diabetes was confirmed by measuring urinary glucose with 

Pretest 3a Ⅱ (Wako Pure Chemical, Osaka, Japan).  In our preliminary study 

demonstrated that N-hexacosanol did not effect on non diabetic rat bladder function 

(data not shown).  In every rat, N-hexacosanol (groups C and D) or vehicle (groups A 

and B) were injected i.p. every day beginning four weeks after the induction of diabetes 

[8, 11, 12].  All of the groups were kept under identical conditions and had access to 

food and drinking water ad libitum.  Eight weeks after the induction of diabetes, the 

rats were subjected to cystometric examination and then sacrificed with an overdose of 

pentobarbital (60 mg, i.p.).  Blood samples were collected from the vena cava, and the 
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bladder dome was removed and placed in Krebs-Henseleit solution.  The blood 

samples and bladder domes were then used for functional, biochemical, and histological 

studies. 

 

Serum glucose and insulin measurement 

Serum glucose concentrations in the experimental rats were measured by the hexokinase 

method (Glucose CⅡ, Wako Pure Chemical, Osaka, Japan), which was carried out 

according to the kit manufacturer’s instructions.  Insulin concentrations were also 

measured by ELISA according to the manufacturer’s instructions (Rat Insulin ELISA, 

Mercodia AB, Uppsala, Sweden). 

 

Voiding behavior studies 

Voiding behavior studies were performed according to methods used in our previous 

study [8].  All rats received water ad libitum from the time they were initially placed 

in the cage.  The parameters of the micturition reflex obtained were micturition 

frequency and total urine output.   

 

Cystometr ic studies 

The cystometric studies were performed according to methods used in our previous 

report [8].  The following parameters were evaluated according to our previous 

reports: bladder capacity, maximum detrusor pressure during voiding, single-voided 

volume, and residual urine volume. 
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Tissue preparation and measurement of contractile force in the bladder   

Functional studies were conducted according to methods used in our previous reports 

[8].  Razor blades were used to cut uniform longitudinal strips of the posterior wall of 

the bladder dome (1.5 x 5 mm).  These muscle strips were mounted in organ baths (25 

ml) containing Krebs-Henseleit solution and were bubbled with 5% CO2 and 95% O2

 

 

(37 ℃ ).  One hook was suspended from a transducer (type 45196A, San-ei 

Instruments, Tokyo, Japan), and the lower hook was fixed to a plastic support leg 

attached to a micrometer (Mitutoyo, Tokyo, Japan).  Changes in the tone of the strips 

were measured isometrically by means of force transducers, and the data were recorded 

on a personal computer (Macintosh G3, Apple Computer) with the use of software 

Chart v 3.6.9 and a PowerLab/16sp data acquisition system (AD Instruments).  

Cumulative concentration-response curves to carbachol and KCl (100 mM) were 

constructed. 

Real-time PCR (quantification of muscar inic m2 and m3

Muscarinic m

 receptor mRNAs) 

2 and m3 receptor mRNAs in the experimental bladder dome were 

measured by real-time PCR methods.  The RNA was purified by RNeasy Mini Kit 

(Qiagen, Valencia, CA) according to the manufacturer’s instructions.  A reverse 

transcriptase (RT) mixture (28 µl) containing 2 µg of total RNA was made and 

incubated at 37 ℃ for 60 min according to a previously reported method [13].  Five 

microliters of the mixture was used for real-time PCR, which was carried out using a 
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LightCycler thermal cycler system with a LightCycler-FastStart DNA Master 

Hybridization Probe according to the manufacturer’s instructions (Roche Diagnostics, 

Tokyo, Japan) [14].  The primers and probe sequences specific to the genes of M2 and 

M3 receptors are shown in Table 1.  The predicted product sizes of M2 and M3

 

 

receptors were 148 bp and 149 bp, respectively.  The primer and probe of the β-actin 

used were from the LightCycler-Primer/Probe Set (rat).  A total of 15 µl of solution 

was used for the sample.  The specificity of the reaction was confirmed by melting 

curve analysis and 2% agarose gel electrophoresis.  The β-actin gene was used as the 

internal standard and analyzed by real-time PCR using the same RT mixture. 

Histological examination of the rat bladder dome 

After fixation, the tissues were embedded in paraffin.  Five micron-thick tissue 

sections were cut from these paraffin blocks.  All of the bladder specimens were 

stained using hematoxylin and eosin (H&E) staining.  The stained tissue sections of 

the experimental bladder dome were viewed at a magnification of X 40-400 under a 

light microscope (BX50, Olympus, Tokyo, Japan) using a digital camera (HC-3000, 

Fujix, Tokyo, Japan).  The serial sections were also subjected to immunohistochemical 

stains for muscarinic M2 and M3 receptors.  Briefly, after sections were deparaffinized, 

they were then reacted overnight with rabbit anti-muscarinic M2 receptor or muscarinic 

M3 receptor polyclonal antibody (Acris Antibodies GmbH, Hiddenhausen, Germany) at 

1:1000 and 1:500 dilutions, respectively.  The specifically bounds of first bound 

antibodies were visualized by Histofine simple stain rat MAX-PO with a Histofine 
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simple stain substrate (Nichirei Co., Tokyo, Japan).  Mayer’s hematoxylin was used for 

counterstaining.  Negative controls were established for each group according to the 

procedure mentioned above, but without the Histofine simple stain rat MAX-PO.  The 

stained tissue sections were viewed at a magnification of X 40-400 under a light 

microscope (BX50, Olympus) using a digital camera (HC-3000, Fujix). 

 

Data analysis 

The ED50 and Emax values were obtained by a Macintosh computer (G3) loaded with 

Chart v3.6.9 software and a PowerLab/16sp data acquisition system.  Contractile data 

were calculated as grams of active force per cross sectional area in square millimeters.  

The cross-sectional area was calculated using the following equation: cross-sectional 

area = weight / (length x 1.05), where 1.05 is the assumed density of the muscle [8].  

The expression of muscarinic m2 and m3

 

 receptor mRNAs was quantified according to 

the expression of β-actin mRNAs in the experimental rat bladder domes.  A statistical 

comparison of differences between groups was performed using analysis of variance 

and Fisher’s multiple comparison tests.  P<0.05 was regarded as the level of 

significance. 

Drugs and chemicals  

3-(15 Hydroxypentadecyl)-2,4,4-trimethyl-2-cyclohexen 1-one (N-hexacosanol) was 

obtained from Meiji Milk Products Co., Ltd., Tokyo, Japan.  Carbachol was purchased 

from Sigma (St. Louis, MO).  Streptozotocin (STZ) was purchased from Wako Pure 
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Chemical (Osaka, Japan).  All other chemicals were available commercially and of 

reagent grade.



 11 

Results 

General features of the exper imental animals  

The data obtained regarding the general features and serum concentrations of insulin 

and glucose in the experimental animals are shown in Table 2.  The diabetic rats 

treated without N-hexacosanol showed no weight gain and a significant increase in 

bladder weight during the experimental period.  The diabetic rats displayed 

significantly higher serum glucose and lower serum insulin levels than those of the 

control rats.  Treatment with N-hexacosanol (at either 2 or 8 mg/kg) neither increased 

body weight nor reduced serum glucose and insulin levels of the diabetic animals.  

These data agree with our previous reports.  Diabetic rats treated without 

N-hexacosanol showed a significant increase in bladder weight during the initial four 

weeks, and treatment with N-hexacosanol failed to inhibit an additional increase of 

bladder weight. 

 

Voiding behavior studies  

The voiding behavior data and the cystometric results for the experimental animals are 

shown in Table 3.  In the voiding behavior studies, urine production, micturition 

frequency, and single voided volume in the diabetic rats (Group B) were significantly 

larger than that in the control rats (Group A).  Additional treatment with 

N-hexacosanol (at both 2 and 8 mg/kg) had no effect on urine production, single voided 

volume, or micturition frequency.   
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Cystometr ic studies  

In the cystometric studies, the maximum detrusor pressure (Pdet) in the diabetic rats 

(group B) was significantly higher than that in the controls.  The single voided volume 

in the diabetic rats treated with or without N-hexacosanol was markedly higher than that 

of the controls.  The residual urine volume in the diabetic rats (group B) was markedly 

greater than that of the controls.  Although the single voided volume was not altered 

by treatment with N-hexacosanol, these two parameters, i.e., maximum detrusor 

pressure (Pdet) and residual urine, were significantly improved by treatment with the 

high dose of N-hexacosanol. 

 

Measurement of contractile response to carbachol and 100 mM KCl 

The Emax values for the contractile response of the longitudinal muscles to carbachol 

and KCl (100 mM) were determined (Table 4).  Diabetes-induced detrusor 

hyperreactivity by carbachol was ameliorated by N-hexacosanol in a dose-dependent 

manner.  The low-dose (2 mg/kg) treatment with N-hexacosanol tended to improve the 

hyperreactivity of the rat detrusor.  The high-dose (8 mg/kg) treatment with 

N-hexacosanol significantly ameliorated diabetes-induced hyperreactivity of the 

detrusor in the diabetic group.  However, the contractile responses to 100 mM KCl and 

the ED50

 

 values with respect to carbachol were not altered by either the induction of 

diabetes or the N-hexacosanol treatment (Table 4).   

Measurement of muscar inic m2 and m3 receptor mRNAs in the rat bladder dome 
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Table 5 shows the expression of m2 and m3 muscarinic receptor mRNAs in the bladder 

dome.  The expression of both mRNAs was significantly higher in the diabetic group 

(B) than in the control group (A).  N-hexacosanol ameliorated the expression of these 

mRNAs in a dose-dependent manner.  Furthermore, in the control group (group A), the 

expression level of the m3 receptor mRNAs was about 25-fold compared to that of the 

m2 receptor mRNAs; in all other groups, the expression level of the m3 receptor 

mRNAs was higher than that of the m2

 

 receptor (10- to 25-fold). 

Histological examination of rat bladder dome 

Typical H&E staining results obtained from the histological examination are shown in 

Figs. 1 and 2.  Typical H&E and immunohistochemical staining results obtained from 

histological examination are shown in Figs. 1 and 2.  In both muscarinic M2 and M3 

receptors immunohistochemical stainings, immunohistological positive was observed in 

the bladder smooth muscle and urothelium in the rat (Fig. 1 and 2).  In the smooth 

muscle layer, immunohistological positive were seen inside and between the muscle 

bundles.
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Discussion 

 

Latifpour et al. [5] reported increased numbers of muscarinic receptors associated with 

the contractile responses to muscarinic agonists in the bladder dome in STZ diabetic 

rats.   Our observations in this study support their report.  We demonstrated the 

ameliorative effects of N-hexacosanol on diabetes-induced hyperreactivity in the rat 

detrusor.  This may explain why N-hexacosanol rescues damaged peripheral neurons 

[7].  The precise mechanism underlying this effect was unclear, and we suspected that 

N-hexacosanol worked on the muscarinic receptor system.  The increase in maximal 

contractions without changes in the ED50 values due to the potent cholinergic agonist 

carbachol in 8-week STZ-induced diabetic rat detrusor indicates that the number of 

muscarinic receptors increases without any change in receptor affinity in the diabetic 

condition.  Therefore, it is possible that N-hexacosanol could ameliorate detrusor 

hyperreactivity by regulating the expression level of the muscarinic receptors.  In order 

to investigate the possible mechanism underlying this effect, we measured the 

expression levels of muscarinic m2 and m3 receptor mRNAs by real-time PCR.  It is 

well known that both M2 and M3 muscarinic receptors are expressed in the detrusor and 

influence contraction through distinct pathways.  Despite numerous reports concerning 

the effects of diabetes mellitus on the lower urinary tract, little is known about the 

influence of diabetes on cholinergic receptors at the mRNA level.  In a previous study 

using a binding assay, muscarinic receptor levels were reported to be up-regulated in 

diabetic rat bladder domes [5, 6].  The present study demonstrates that the expression of 
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m2 and m3 receptor mRNAs was higher in diabetic rats compared to the controls, and 

that N-hexacosanol ameliorated these increases in the rat detrusor.  The present data 

indicate the possibility that the over-expression of muscarinic m2 and m3 receptor 

mRNAs is related to the hypercontraction of the detrusor in diabetic rats.  Furthermore, 

N-hexacosanol partially normalized this hypercontraction by reducing the expression 

levels of the muscarinic m2 and m3 receptor mRNAs.  Recently, Mansfield et al. 

reported that although 75% and 25% of expressed muscarinic receptors were M2 and 

M3 / M5 receptors, respectively, the expression of m3 receptor mRNAs was 

significantly higher than that of m2 receptor mRNAs in the human detrusor and 

epithelium as measured by quantitative competitive RT-PCR methods [15].  Although 

the stability of muscarinic m2 receptor mRNAs is unclear, this instability may be 

attributable to variation in mRNA translation rates, which are governed by a variety of 

hormonal and cellular events, and/or to mRNA stability [15].  Fraser and Lee reported 

that muscarinic m3 receptor mRNA expression was extremely stable compared to that of 

muscarinic m1

The immunohistochemical staining results obtained from the histological 

studies indicated that muscarinic M

 receptor [16]. 

2 and M3 receptors were expressed in both the 

smooth muscle and urothelium in the control.  The M2 receptor antibody was raised in 

rabbits to a synthetic peptide covalently attached to a carrier protein.  Antibodies to the 

carrier protein could have stained similar epitopes in the tissue which are not specific 

for the receptor subtype.  This is particularly true if the carrier protein is the commonly 

used fusion protein glutathione-S-transferase.  Leaving out the secondary antibody, 
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enzyme conjugate (Histofine MAX-PO) will always produce a negative section even if 

100% of the binding is non-specific and therefore this does not prove that the primary 

antibody is specifically bound specifically to the muscarinic receptor subtype in the 

tissue.  So, in this study, we can not rule out that immunohistological positive findings 

were only specific for the receptor subtype.  There was no difference in distribution 

between any of the groups in this study.  Some reports indicated the existence of 

muscarinic M2 and M3

Recently, Torimoto and associates, as well as the present authors, have reported that 

diabetes induces an increase in maximum detrusor pressure during voiding; this increase 

occurred by urethral dysfunction associated with diabetic neuropathy [8, 19].  From 

our previous and present data, it is possible that N-hexacosanol has the ability not only 

to prevent but also to reverse effects of diabetes-induced urethral dysfunction. 

 receptors in the urothelium [17, 18].  Although the precise role 

of these receptors in the urothelium is unclear, Yoshida and his associates have reported 

that the presence of acetyltransferase immunoreactivity in both the smooth muscle layer 

and in the urothelium suggests that a non-neural cholinergic system is activated in the 

urothelium of the bladder [18].  

As N-hexacosanol’s reversal effects take place according to a mechanism that differs 

from that of insulin [20], it is possible that insulin treatment, if administered 

concomitantly with N-hexacosanol treatment, may prevent or reverse diabetic peripheral 

neuropathy.  However, the detailed mechanism of this preventive effect remains 



 17 

unclear, and warrants further study. 
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Figure legends 

 

Figure 1. H&E and immunohistochemical stainings in the control rat bladder dome. 

The muscarinic M2 and M3

 

 receptors were expressed in the bladder smooth muscle and 

urothelium in the control rats. (x400). 

Figure 2. H&E and immunohistochemical stainings in the diabetic rat bladder dome. 

The muscarinic M2 and M3

 

 receptors were expressed in the bladder smooth muscle and 

urothelium in the diabetic rats. (x400). 



Table 1.  Oligonucleotide pr imers and probes used for amplification of M2 and M3

 
 muscar inic receptors 

  Gene                    Position               Oligonucleotide sequence 5’-3’  

     

 M2

 M

   (primer) forward (1390 – 1409) 5’-CCACTCCAGAGATGACAACT-3’                     

2

 M

   (primer) reverse (1519 – 1537) 5’-GGCTACAACGTTC- TGCTTT-3’ 

3

 M

   (primer) forward (1227 – 1245) 5’-GGACTGTGGATGT- GGAGAG-3’                     

3

 M

   (primer) reverse (1358 – 1375) 5’-CGAGGAGTTGGTGTCAGA 

2

 M

   (probe) forward (1433 – 1460) 5’-CCAACTAGTTCTACAGTGGTACTCGTTGGGGTGT-3’ 

2

 M

   (probe) reverse (1462 – 1494)  5’-XACACATCACCTTTTTG- GGCCTTGGTGACT-3’ 

3

 M

   (probe) forward (1267 – 1284) 5’-CCA- GAAGAGCATGGGTGATGGTGACAACT-3’ 

3

 

  (probe) reverse (1286 – 1325)  5’-XGT- CAGAAGGATTTCACCAAGCTTCCCATCCT-3’ 



 

Table 2.  General features of the exper imental rats 

 

          Body Weight (g)    

      8 weeks old 12 weeks old   16 weeks old Bladder weight (g)  Serum glucose (mg/dl)  Serum insulin (µg/l) 

A 242.9 ± 3.0 423.6 ± 5.9 498.8 ± 10.1        0.131 ± 0.006      172.8 ± 13.9    2.39 ± 0.660  

B 246.8 ± 6.4 259.5 ± 17.2 * 231.8 ± 23.5 *      0.264 ± 0.038 *     405.0 ± 54.3 

C 250.4 ± 4.7 251.0 ± 17.0 * 229.0 ± 25.4 *      0.232 ± 0.022 *     314.4 ± 46.9

*    0.17 ± 0.009 *  

 

D 253.3 ± 5.1 257.0 ± 16.1 * 237.0 ± 17.1 *      0.241 ± 0.019 *     364.8 ± 34.3 *    0.16 ± 0.004 * 

*    0.17 ± 0.010 *  

 

A: control rats, B: diabetic rats treated with sham, C: diabetic rats treated with N-hexacosanol (2 mg/kg), and D: diabetic rats treated 

with N-hexacosanol (8 mg/kg).  Data are shown as mean ± SEM of six to eight separated determinations in each group.  *) 

significantly different from A group.  



Table 3.  Voiding behavior studies and cystometrogram data in the exper imental rats 

 

      micturion frequency (/day)  urine production (ml/day) Pdet (cmH2

A  10.8 ± 1.9    10.7 ± 0.7  39.1 ± 3.3  0.39 ± 0.05      0.046 ± 0.007 

O)  single voided volume (ml)   residual urine (ml)   

B 43.9 ± 4.8 * 115.3 ± 13.1 *  52.4 ± 4.6 * 0.69 ± 0.11 *     0.573 ± 0.038 † 

C 49.0 ± 6.3 *  99.9 ± 14.2 *  52.1 ± 4.2 * 0.68 ± 0.11 *     0.220 ± 0.016 ‡ 

D 38.8 ± 6.4 *  97.5 ± 18.9 *  41.6 ± 2.1 ** 0.69 ± 0.11 *     0.207 ± 0.015 ‡ 

 

A: control rats, B: diabetic rats treated with sham, C: diabetic rats treated with N-hexacosanol (2 mg/kg), and D: diabetic rats treated 

with N-hexacosanol (8 mg/kg).  Data are shown as mean ± SEM of six to eight separated determinations in each group.  *) 

significantly different from A group.  **) significantly different from B and C groups. †) significantly different from the other groups.  

‡) significantly different from A and B groups.   

 



Table 4.  Functional studies in the exper imental rats 

 

        Emax (g/mm2)      ED50 (10-7 M)    KCl (g/mm2

A   2.35 ± 0.16   15.7 ± 2.6   1.69 ± 0.14 

)        

B  3.29 ± 0.33*   14.0 ± 2.1   1.70 ± 0.17 

C  2.81 ± 0.26   17.7 ± 2.3   1.70 ± 0.16 

D  2.42 ± 0.18†   21.0 ± 2.4   1.59 ± 0.10 

 

A: control rats, B: diabetic rats treated with sham, C: diabetic rats treated with N-hexacosanol (2 mg/kg), and D: diabetic rats treated 

with N-hexacosanol (8 mg/kg).  Data are shown as mean ± SEM of six to eight separated determinations in each group.  Emax and 

ED50 values are for carbachol.  KCl means contractile force to 100 mM KCl.  *) significantly different from A and D groups.  †) 

significantly different from B and C groups. 



Table 5.  Expression of muscar inic M2 and M3

 

 receptor mRNAs in the bladder dome 

               M2/β-actin (x 10-4)            M3 /β-actin (x 10-4

A   1.99 ± 0.56  46.9 ± 6.2    

)     

B 10.02 ± 3.52* 101.3 ± 18.8†    

C  4.87 ± 1.16**  82.9 ± 14.9‡    

D  3.86 ± 0.93*  61.9 ± 7.5 

 

Expression of muscarinic M2 and M3 receptor mRNAs were normalized with that of  -actin mRNAs.  A: control rats, B: diabetic rats 

treated with sham, C: diabetic rats treated with N-hexacosanol (2 mg/kg), and D: diabetic rats treated with N-hexacosanol (8 mg/kg).  

Data are shown as mean ± SEM of six to eight separated determinations in each group.  *) significantly different from the other groups.  

**) significantly different from A and B groups.  †) significantly different from A and D groups.  ‡) significantly different from A 

group.  
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