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Abstract: Conventional biometric systems mainly assume one-time-
only authentication. However, this technique is not used with user
management applications. If a user is replaced by an imposter
after the authentication has occurred, the systems cannot detect
such a replacement. One solution to this problem is on-demand
authentication, in which users are authenticated on a regular or
nonregular schedule, as determined by the system. However, the on-
demand-authentication technique requires that we present biometric
data without regard to do so. In this paper, we focus on the use
of brain waves as transparent biometric signals. In particular, we
assume driver authentication and measure the brain waves of drivers
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when they are performing mental tasks such as tracing routes or
using a simplified driving simulator as an actual task. We propose to
extract the power spectrum in the a—( band as an individual feature
and propose two verification methods based on the similarity of the
features. In addition, we propose to divide the a—(3 band into either
four or six partitions and to fuse the similarity scores from all the
partitions. We evaluate the verification performance using 23 subjects
and obtain an equal error rate of 20-25 %.

Keywords: brain wave; EEG; on-demand authentication; transparent
biometrics; driver authentication; route trace; simplified driving
simulator.
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1 Introduction

In security systems, biometrics is expected to lead to better results than passwords
or ID cards (Wayman et al., 2005). However, this approach is vulnerable. A few
biometric authentication systems have been circumvented by artifacts; therefore,
it is desirable that the biometric data are hidden within a person’s body and
authentication systems possess the function of liveness detection.

In addition, conventional biometric systems mainly assume one-time-only
authentication technique such as access control, ATM-banking, and passport
control. However, the one-time-only authentication method is not used with user
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Figure 1 Authentication styles, (a): one-time-only, (b): continuous, and (c):
on-demand authentication.

management applications. Once a genuine user is authenticated at the beginning
of use a system, the system is unable to detect whether or not the user has been
replaced by an imposter after authentication has occurred. This issue is illustrated
in Fig. 1 (a) (Nakanishi et al., 2010), in which it is assumed that both the
authentication and application processes are executed in a single system. The one-
time-only authentication technique cannot detect spoofing after authentication,
whereas authentication does not incur a large computational load on the system
because it is performed only once when the execution of the application begins.

To overcome the above problem, continuous authentication (Altinok and Turk,
2003; Kwang et al., 2009) is found to be effective as illustrated in Fig. 1 (b).
Security is always guaranteed while the application is being executed. However,
continuous authentication increases the computational load on the system. For
instance, Ref. (Kwang et al., 2009) reported that a computational overhead of 42
% was recorded in a continuous authentication system.

Therefore, we proposed an on-demand authentication, which is illustrated in
Fig. 1 (c¢) (Nakanishi et al., 2010). Users are authenticated on both regular and
nonregular schedules according to the authentication demand request received
from the system. On-demand authentication is shown to be a solution to the trade-
off problem between guaranteeing security and preventing system overload.

The fingerprint and iris are not suitable for continuous and on-demand
authentication because they require users to present the biometric data
whenever authentication is performed. In other words, continuous and on-demand
authentication techniques require biometrics sources that can transparently
present biometric data.
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For transparent biometrics, the face, ear, voice, keystroke, and gait are possible
options. However, the face and ear can easily be imitated using artifacts, and the
voice, keystroke, and gait have limited applications.

On the other hand, the use of brain waves as biometrics has been proposed
in several studies (Poulos et al., 1999a,b,c; Paranjape et al., 2001; Ravi and
Palaniappan, 2005; Palaniappan, 2005; Mohammadi et al., 2006; Ravi and
Palaniappan, 2006; Singhal and Ramkumar, 2007; Marcel and Millan, 2007;
Palaniappan and Mandic, 2007; Riera et al., 2008). Brain waves are generated by
the neural activities in the cerebral cortex; therefore, it is hidden in the body and
cannot be bypassed. The brain wave is useful for the function of liveness detection
because it is generated only by alive human beings. Moreover, brain waves are
generated naturally; therefore, it enables on-demand authentication. Conversely,
the brain wave is unsuitable for one-time-only authentication because users are
required to put sensors on their scalp whenever they are being authenticated.

In authentication applications, there exists a trade-off between the degree of
security and the usability. From a basic research standpoint, it is important to
evaluate complex models/methods for feature extraction and verification in order
to obtain higher security degree. In such cases, for instance, users have to put a
lot of electrodes on their scalp; thus, the usability is degraded. In addition, a high
performance system is required for coping with a heavy computational load. On
the other hand, for a practical use, the usability sometimes has higher priority. It
is better to execute authentication in the easy manner possible, for instance, using
single sensor and simple methods for feature extraction and verification as they
should be processed in a low-cost embedded system.

We have studied brain waves as biometrics based on the latter standpoint
(Nakanishi et al., 2009, 2010, 2011a; 2011, b; Nakanishi et al., 2012a,b). Moreover,
to verify the performance of brain waves, we assumed five steps based on the user’s
physical and mental conditions: 1) eye-closed and relaxed condition, 2) eye-closed
and mentally-burdened (using mental energy to perform tasks) condition, 3) eye-
opened and relaxed condition, 4) eye-opened and mentally-burdened condition,
and 5) eye-opened and performing-actual-task condition (Nakanishi et al., 2012b).

We consider that operator verification for systems such as computers and
vehicles are suitable applications, in which authentication using brain waves may
be used. The operator wears a brain wave sensor, and he/she is verified on demand
while using the system. However, it is assumed that the operator is replaced by the
other when he/she is not in operation but in stoppage. It is necessary to perform
authentication whenever the operation is re-started; thus, in such a situation, on-
demand authentication is suitable.

In Ref. (Nakanishi et al., 2012b), by assuming authentication of computer users,
we examined the first three steps as mentioned above. The verification rate was
approximately 15%, which was unsatisfactory. However, it is confirmed that brain
waves can be utilized as a biometric modality even by using a simple approach.

In this study, we verify performance of the brain wave for the last two
conditions, that is, the eye-opened and mentally-burdened conditions, and eye-
opened and performing-actual-task conditions. More precisely, to perform driver
authentication, we examine verification performance of the brain waves of users
(drivers) who are tracing routes (mental task) or driving virtually (actual task).



Brain Waves as Transparent Biometrics )

In this study, we focus on driver authentication because if sleeping and/or
intoxicated drivers can be detected using brain waves, this technique can be
integrated with a driver’s on-demand authentication system and it will become a
valuable tool to reduce the frequency of vehicle accidents.

2 Verification Using Brain Waves

2.1 Brain Wave

Electrical changes that are due to a large number of synapses (neurons) in the
cerebral cortex are accumulated and are then detected as brain waves on scalp
using an electrode. Because of the spatiotemporal dispersiveness of the neurons,
there are generally no synchronized patterns in the electroencephalogram (EEG)
signals. However, when the activity of the cerebral cortex decreases, the brain wave
becomes partially synchronous, and distinct waves are observed. Waves such as
(0.5-3Hz), 0 (4-7Hz), o (8-13Hz), and 8 (14-30Hz) are well known and are usually
detected when humans are in a deep sleep, sleepy, relaxed with closed eyes, and
involved in some mental activity, respectively. In particular, the o and/or the
waves are applicable for authentication of persons.

2.2 Feature Extraction and Verification

The approach used to perform authentication using EEG is the same as that in
conventional studies (Nakanishi et al., 2009, 2010, 2011a; 2011, b; Nakanishi et al.,
2012a,b); that is, the architecture for feature extraction and verification must be
as simple as possible.

In Ref. (Nakanishi et al., 2012b), for the individual feature, we proposed the
use of spectral variance and the maldistribution in the o band and the difference
between the spectra under relaxed and mentally-burdened conditions in the 3
band. In particular, the former two are based on the assumption that the EEG
power spectral elements are normally distributed in the o band. However, the
EEG spectrum in the « band is suppressed in the tasked condition; therefore, the
conventional feature becomes ineffective. Thus, by extending the concept of feature
extraction in the 8 band in the conventional study, in this paper, we propose to
extract the power spectrum in the a—@ band as an individual feature. Verification
is achieved on the basis of the difference between the mean value of the power
spectrum in the tasked condition and that in relaxed condition.

It should be noted that in the eye-opened condition, it is well known that
the EEG is affected by blinking of the eye. Therefore, we examined the effect
of eye-blinks in advance. The results confirmed that the spectral elements of the
EEG during eye-blinks were distributed under the a band and did not overlap
with the spectrum used in feature extraction described later in the text. As long
as individual features are extracted from the EEG spectrum, we believe that to
prevent it from having an impact, it is unnecessary to detect or filter the eye-blink.

Furthermore, we divide the a—( band into several partitions and merge the
scores from all partitions. This is because distribution of the spectral elements in
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Figure 2 Block diagram of the verification method (I).

the a—( band depends on an individual; therefore, each partition has a different
effect on the verification.

The block diagram of the verification method is described in Fig. 2. Prior to
the verification, the templates are enrolled. There are two stages. First, EEGs for
all users are measured in the relaxed condition. Then, their power spectra are
calculated using FFT. Spectral elements in each spectrum are smoothed using the
moving average with a window size of five. This process is repeated L times for
each user, and by using the L power spectra, an ensemble-averaged spectrum is
obtained. All spectral elements of the averaged spectrum are simply divided into
several partitions (groups), and the mean value of the power spectral elements in
each partition is calculated and stored as a template s7.

Next, similar measurements and calculations are performed in the tasked
condition. The resulting values of power spectral elements in all partitions for all
users are stored as templates sk..

In verification, the EEG of an applicant is measured in the tasked condition,
and after smoothing and normalization, the mean values of power spectral
elements s are obtained in all partitions. The verification score T is calculated by

P
T=7 llsh— sl = Isk — s'lly (1)

p=1
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Figure 3 Block diagram of the verification method (II).

where P is the number of partitions.

For normalization, each power spectral element of s* is multiplied by the ratio
of the mean value of all power spectral elements of the template: sf to that of
s'. The mean power spectrum of s’ is equalized to that of the template: sk.. This
method is called as Method (I) for convenience.

In this paper, we propose another verification method, in which the mean
power spectra: s; and s' are directly compared. In this method, measurement in
the relaxed condition becomes unnecessary, and the two stages for the enrollment
required in Method (I) can therefore be reduced to one, as described in Fig. 3.

The score T is given by

P
T="Y |sh — sl (2)
p=1

We call this Method (II).

In both methods, if T is less than the threshold, the applicant is authenticated
as being genuine. If not, the applicant is rejected as an imposter. The threshold is
determined in the tradeoff between ”security” and ”usability”. A small threshold
results in higher degree of security while degrading the usability. The decision
depends on which of the two has a higher priority in practical applications.
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3 Simplified Driving Environments

By wusing the proposed feature extraction and verification, we verified the
performance of EEGs for driver authentication. However, experiments that are
performed while driving are at risk of causing accidents. Therefore, in our
laboratory, we prepared two experimental environments that simulate driving. One
is a mental task called route trace (Nakanishi et al., 2011a), and the other is an
actual task using a simplified driving simulator (2011, b).

3.1 Route Tracing

Drivers use four limbs to control their cars on the basis of audio-visual information
that is received. In addition, such a process occurs quickly, so it is difficult to
extract mental tasks that occur while performing all possible tasks during practical
driving. Furthermore, if actual tasks are different from the mental ones, drivers will
not progress to the next actual task, and they will then be required deliberately
perform the mental ones purposely every time authentication is executed. This is
inconvenient for drivers. To realize transparent authentication, mental tasks should
be related to the actual tasks being carried out.

In this study, we select a mental task, in which drivers are comparing the
landmarks in their field-of-view with the landmarks in their memory. This is
hereafter called route tracing. Route tracing is a realistic task for drivers; therefore,
it enables transparent authentication.

To build an environment for the route trace, we captured driving scenes using
a digital video camera, which was placed on the dashboard in the direction of
movement in a car. As the car was being driven, it turned at as many intersections
as possible to provide the subjects with a heavy mental load.

The captured scenes are loaded in a computer, and the scenes with poor
visibility and/or out-of-focus ones are eliminated. As a result, a three minutes long
driving scene was prepared. Still images of the driving scene are shown in Fig. 4.

3.2 Simplified Driving Simulator

We desired to measure brain waves in a more practical environment by introducing
a special training simulator for driving, but it was not possible due to the
associated cost. Thus, we composed a simplified driving simulator using home-use
gaming machines.

Driving scenes were generated using the PlayStation 3 (PS3) as a hardware
and the Gran Turismo 5 Prologue (GT5P) as a software. Both were produced by
Sony Computer Entertainment Inc. However, GT5HP is basically a racing game,
and so, the following settings were selected to convert it into a driving simulator.
The maximum possible speed of a car was limited to 65 km/h by holding the first
gear in the manual transmission. The driving course was selected to be an urban
road in London to simulate normal driving conditions. The driving mode used was
the time trial (solo drive) to avoid accidents with other cars. Figure 5 shows still
images of the driving scene.
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Figure 5 Still images of the driving scene produced by the simplified driving
simulator.

3.8 Measurement of Brain Waves

For the brain wave sensor, we also used a single-channel consumer
electroencephalograph produced by Brain Function R&D Center. A single
electrode was set on the frontal region of the head using a headband. This region
corresponds to the frontal pole (Fpl), which is defined by the 10/20 method, an
international standard. Table 1 shows the specifications of the sensor.

The driving scenes were displayed on a 60 inch screen with a size of 1100 mm
x 830 mm. The distance between the screen and the subject was 1300 mm. In
preliminary experiments using nine subjects, we determined these factors on the
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Table 1 Specifications of the brain wave sensor.

Frequency Range 1-24 Hz
Minimum Voltage 5 uVp—p
Maximum Voltage 80 uVy—p
Sampling Frequency | 128 Hz

Controller
-y || = |
-

PS3 & GT5P

Projector Projector

Accelerator & Brake
Controllers

(a) Route Tracing (b) Simplified Driving Simulator

Figure 6 Layouts for (a): route tracing and (b): simplified driving simulator.

basis of a comparison of the similarity of the view from the subjects with the real
one . Layouts for the measurements are illustrated in Fig. 6.

There were 23 male subjects around 20 years old, and each had a driver’s
license. Prior to measuring the brain waves in the tasked condition, we measured
the brain waves in relaxed and eye-opened conditions to establish control for
Method (I).

In the route trace, the subjects were first presented with driving scenes twice,
and they were requested to memorize the landmarks in the scenes. Next the
subjects wore the brain wave sensor, and the same driving scenes were again
presented. While measuring brain waves, the subjects were requested to trace a
route by checking the landmarks. After the measurements, to confirm whether or
not the subjects had traced the route, they were presented with printed images of
certain intersections, and they were then asked the direction, in which the car had
been moving. If they made a mistake, that is, forgot the route, measurement was
cancelled and retaken.

In case of the simplified driving simulator, before the measurements, the
subjects were required to make two rounds to get adapted to the feeling of
maneuvering. After the practice, the subjects wore the sensor, and their brain
waves were then measured while handling the controllers depending on the
driving scenes. If there was an accident, for instance, the car hit against a wall,
measurement was retaken.
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Figure 7 ROC curves in various conditions.

Each measurement lasted three minutes. The measurement was performed once
a day, and it was repeated ten times (for ten days) in intervals of at least one week.
As a result, ten EEGs were obtained from each subject.

4 Verification Experiments

The middle one-minute data of each EEG measured were used in the verification
experiments2. The average number L was set to five, that is, five EEGs from each
subject were used to generate his/her templates. The remaining five sets of data for
each subject were used for verification, and all other subjects’ data were considered
to be of imposters. In this experiment, spectral elements at 8-20 Hz were used to
extract individual features.

4.1 Results

Figure 7 shows ROC curves in the route trace and the simplified driving simulator
obtained using Methods (I) and (II) with four and six partitions. The performance
is verified using an equal error rate (EER), where a false acceptance rate is equal
to the false rejection rate. The threshold T is determined to obtain each EER.
EERs in all conditions are summarized in Table 2.

4.2  Comparison of two tasks

By comparing EERs of two tasks, it was confirmed that the verification
performance in the driving simulator was degraded. The movement of limbs in the
simulator may have caused the variation of EEG spectra as individual features,
thereby resulting in degradation.
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Table 2 Verification performance.

| EER (%)
Route Trace Four partitions | Six partitions
Method (I) 21 23
Method (II) 19 19
Driving Simulator | Four partitions | Six partitions
Method (I) 28 28
Method (II) 23 20

Power Spectrum [x107]
Power Spectrum [x107]

Frequency [Hz] Frequency [Hz]

(a) Relaxed condition (b) Tasked condition

Figure 8 Spectral distribution at a—3 band.

It is well known that EEGs will be greatly contaminated by the movement
and it is impossible to remove such an artifact from the EEG. The brain waves
measured in the driving simulator are close to those obtained during practical
driving. Therefore, to prevent the verification performance from being degraded
in practical driving, it is necessary to detect the movement of limbs and to avoid
measuring brain waves while the limbs’ moving.

On-demand authentication is better suited for such a case. If the movement of
limbs can be detected using sensors in the steering wheel, accelerator, and brake,
it is possible to perform authentication only when limbs are not moving.

4.8 Comparison of two verification methods

A Comparison of two verification methods shows that the performance of Method
(IT) was slightly superior to that of Method (I). Figure 8 shows the spectral
distribution in the a—0 band in (a) relaxed and (b) tasked conditions. In the
relaxed condition, there are many large peaks in the o band. We proposed the
extraction of individual features, assuming that the spectral elements in the «
band are normally distributed (Nakanishi et al., 2012a). On the other hand, the
spectral distribution in the 4 band is not distinct; therefore, we used as related
features the difference between the mean value of the power spectrum in the
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Table 3 EER at each partition.

‘ EER (%)
Four partitions (Hz) | Route Trace | Driving Simulator
8-11 27 36
11-14 27 29
14-17 30 28
17-20 33 27
Six partitions (Hz) | Route Trace | Driving Simulator
8-10 29 37
10-12 27 34
12-14 30 30
14-16 33 30
16-18 33 27
18-20 35 27

relaxed condition and that in the tasked condition (Nakanishi et al., 2012b). In
this study, we extended the concept to the o band and used the difference between
the mean value of the power spectrum in a—(3 band in relaxed conditions and that
in tasked conditions in Method (I). However, the result for which Method (II)
is better than Method (I) suggests that the mean value of the power spectrum
in the a—f3 band in tasked condition, that is, the absolute feature is better than
the relative one. Therefore, the spectrum in the 8 band appears to possess more
effective characteristics for verification, whereas it does not have a distinctive
pattern in its spectral distribution, as shown in Fig. 8.

An advantage of Method (II) is that simpler verification results in better
verification. In addition, the procedure for making templates becomes simpler.

4.4 Comparison of two partition cases

From a comparison of the results for two partition cases, it is difficult to determine
whether four or six partitions are better. Therefore, we examined EER at each
partition in case of Method (II), and the results are summarized in Table 3.

For the route trace, it is evident that EERs at lower frequency partitions
are smaller. That is, the verification performance is better than that at higher
frequency partitions. This is because the subjects were required to check the
landmarks in the screen using those memorized in the route trace. However, we
used the same driving scenes each time. Therefore, the mental task was more
easily for the subjects, and it caused them to be relatively relaxed during the
measurements. As a result, the a wave was not suppressed, and verification using
lower frequency partitions that are included in the o band was more effective.

On the other hand, in the driving simulator, EERs in higher frequency
partitions are relatively small. The mental task performed while using the driving
simulator was difficult, and mental activity became higher than that in the
route tracing activity. Therefore, the a wave was suppressed, whereas the [
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wave became detectable. According to our results, the verification using higher
frequency partitions corresponding to the 8 band was more efficient.

A similar issue was discussed in Ref. (Nakanishi et al., 2010). The verification
performance while subjects were performing mental arithmetic tasks was superior
to that while they were mentally making sentences. This is because the degree of
mental activity, that is, the nature of the mental task influenced the performance.
In mental arithmetic, the contents were clearly defined, and it was relatively
difficult for the subjects to perform the arithmetic. On the other hand, in case
of the mental composition, several themes were provided as rough guidelines, but
actual contents created during the measurement depended on the subjects. A few
subjects may form simple sentences, which were not as difficult as mental tasks.
As the mental task becomes more difficult, the verification performance improved.

As mentioned in Section 4.2, it is conceivable that brain waves during actual
driving are similar to those in the driving simulator. The use of scores from
partitions corresponding only to the § band may prevent degradation of the
verification performance during practical driving. This must be studied in more
detail.

5 Conclusions

In the application of biometrics for user management, one-time-only authentication
is not used, and therefore, continuous or on-demand authentication is necessary.
In particular, on-demand authentication is effective at reducing the computational
load of authentication systems, thereby maintaining relatively high degree
of system security. However, on-demand authentication requires transparent
biometrics.

We have studied the use of brain waves as transparent biometrics. In this
study, we evaluate the verification performance of the brain wave under eye-
opened and mentally-burdened conditions and the condition with eyes-opened
while performing actual tasks. In particular, to authenticate drivers, we measured
their brain waves as they performed the mental task of tracing routes or the actual
task using a simplified driving simulator. We extracted the power spectrum in the
a—( band as an individual feature and proposed two verification methods based on
the similarity of the feature. One method was to examine the similarity between
the mean value of the power spectrum in the a—( band in tasked and relaxed
conditions. The other method was to directly compare the mean power spectrum in
the a—0 band and its template. In addition, we proposed division of the a—3 band
into four or six partitions and merging the similarity scores from all partitions.

From the experimental results obtained using 23 subjects, an EER of
approximately 20 % was obtained for route tracing. On the other hand, EER was
approximately 25 % for the case of simplified driving simulator, which is similar
to practical driving. The slight degradation of the performance may be due to
the movement of limbs. To prevent such performance degradation of performance
during practical driving, brain waves should be measured while the limbs are not
moving, thereby enabling on-demand authentication to become effective.

There are many other problems to be studied since to use the brain wave as
biometrics is an emerging technology.
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Our approach is based on the assumption that the EEG patterns are unique
for each individual. However, the results in this study did not completely
demonstrate accuracy of the assumption. We will address this problem in future.
The verification performance is not high enough to conclude that the brain wave
is applicable to driver authentication on the basis of our simple approach. We
are currently attempting to introduce a more powerful verification method such
as a support vector machine (SVM) to improve the performance. We also hope
to increase the number of subjects for the experiments to achieve a more reliable
evaluation of the proposed methods.

There have been attempts to use the brain waves in responded to visual or
audio stimuli as biometrics (Ravi and Palaniappan, 2006; Singhal and Ramkumar,
2007). In the literature, it is mentioned that the gamma band is related to higher
order processing of visual images and contains useful information for biometric
applications. However, those approaches are not suitable for scenarios requiring
transparent biometrics because the stimuli are provided every time authentication
task is performed. If the presentation of the stimuli to users of a system for
authentication does not disturb their continuous usage of the system, these
methods can be applied to on-demand authentication.

Stability of the EEG spectrum is also an important issue. A report states that
the EEG can change over a period of a few months (Palaniappan and Revett,
2012). If this is the case, methods for dealing with the instability, (for instance,
incremental enrollment (additional learning) of templates) will be required.

In the future, we plan to develop an on-demand authentication system using
brain waves and to evaluate its verification and usability. We would also like to do
detailed evaluation using more accurate analyzing equipment.
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