(\mathfrak{g}, K)-module of $\mathbf{O}(p, q)$ associated with the finite-dimensional representation of $\mathfrak{s l}_{2}$

Takashi Hashimoto
University Education Center, Tottori University, 4-101, Koyama-Minami, Tottori, 680-8550, Japan
thashi@tottori-u.ac.jp

Abstract

The main aim of this paper is to show that one can construct (\mathfrak{g}, K)-modules of $\mathrm{O}(p, q)$ associated with the finite-dimensional representation of $\mathfrak{S I}_{2}$ by quantizing the moment map on the symplectic vector space $\left(\mathbb{C}^{p+q}\right)_{\mathbb{R}}$ and using the fact that $\left(\mathrm{O}(p, q), \mathrm{SL}_{2}(\mathbb{R})\right)$ is a dual pair. Then one obtains the K-type formula, the Gelfand-Kirillov dimension and the Bernstein degree of them for all nonnegative integers m satisfying $m+3 \leqslant(p+q) / 2$ when $p, q \geqslant 2$ and $p+q$ is even. In fact, one finds that the Gelfand-Kirillov dimension is equal to $p+q-3$ and the Bernstein degree is equal to $4(m+1)(p+q-4)!/((p-2)!(q-2)!)$.

Keywords: indefinite orthogonal group, moment map on symplectic vector space, canonical quantization, irreducible (\mathfrak{g}, K)-module, K-type formula

Mathematics Subject Classification 2010: 22E46, 17B20, 17B10

1. Introduction

Let G be a Lie group with \mathfrak{g}_{0} its Lie algebra and \mathfrak{g} the complexification of \mathfrak{g}_{0}. An action of G on a symplectic manifold (M, ω) is called symplectic if $g^{*} \omega=\omega$ for all $g \in G$, and a symplectic action is called Hamiltonian if there exists a smooth G-equivariant map $\mu: M \rightarrow \mathfrak{g}_{0}^{*}$ satisfying the condition (2.3) below, which is called a moment map, where \mathfrak{g}_{0}^{*} is the dual vector space of \mathfrak{g}_{0}. We are concerned with the case where the symplectic manifold is a real symplectic vector space (W, ω). It was shown in [3] that when $G=\operatorname{Sp}(n, \mathbb{R}), \mathrm{U}(p, q)$ and $\mathrm{O}^{*}(2 n)$, the canonical quantization of the moment map on $W=\mathbb{R}^{2 n},\left(\mathbb{C}^{p+q}\right)_{\mathbb{R}}$ and $\left(\mathbb{C}^{2 n}\right)_{\mathbb{R}}$, with a choice of a Lagrangian subspace in each case, yields a representation of \mathfrak{g} that is the differentiation of the oscillator (or Segal-Shale-Weil) representation of $\operatorname{Mp}(n, \mathbb{R}), \mathrm{U}(p, q)$ and $\mathrm{O}^{*}(2 n)$ respectively, where $\operatorname{Mp}(n, \mathbb{R})$ is the metaplectic group, i.e., the double cover of $\operatorname{Sp}(n, \mathbb{R})$.

In this paper, we consider the case where $W=\left(\mathbb{C}^{p+q}\right)_{\mathbb{R}}$, the real vector space underlying \mathbb{C}^{p+q} :

$$
W=\left\{z=x+\text { i } y \mid x, y \in \mathbb{R}^{p+q}\right\},
$$

which we regard as a symplectic vector space equipped with a symplectic form ω given by

$$
\omega(z, w)=\operatorname{Im}\left(z^{*} I_{p, q} w\right) \quad(z, w \in W),
$$

2 Takashi Hashimoto

and $G=\mathrm{O}(p, q)$, the indefinite orthogonal group defined by

$$
\mathrm{O}(p, q)=\left\{\left.g \in \mathrm{GL}_{p+q}(\mathbb{R})\right|^{t} g I_{p, q} g=I_{p, q}\right\}
$$

with $I_{p, q}=\left[\begin{array}{lll}{ }^{1} p & \\ & & -1_{q}\end{array}\right]$. The action of $G=\mathrm{O}(p, q)$ on W defined by matrix multiplication is symplectic and Hamiltonian. The $\mathrm{O}(p, q)$-case we consider here is closely related to the $\mathrm{U}(p, q)$-case mentioned above. In fact, the symplectic vector space (W, ω) for $\mathrm{O}(p, q)$ is identical to the one for $\mathrm{U}(p, q)$, and the action of $\mathrm{O}(p, q)$ on W is the restriction of the action of $\mathrm{U}(p, q)$ induced from the canonical embedding of $\mathrm{O}(p, q)$ into $\mathrm{U}(p, q)$. Furthermore, the moment map for the $\mathrm{O}(p, q)$-case is the real part of the one for the $\mathrm{U}(p, q)$-case.

The canonical quantization of the moment map $\mu: W=\left(\mathbb{C}^{p+q}\right)_{\mathbb{R}} \rightarrow \mathfrak{g}_{0}^{*}$ for $G=\mathrm{O}(p, q)$, with a choice of a Lagrangian subspace V of W, provides a representation π of \mathfrak{g} as in the cases mentioned above, which is shown to be a partial Fourier transformation of the representation π^{\sharp} of \mathfrak{g} obtained by differentiating the left regular representation of G on $C^{\infty}(V)$. Note that if we restrict the operator $\pi^{\sharp}(X), X \in \mathfrak{g}$, to a subspace consisting of homogeneous functions on V with respect to the multiplicative group $\mathbb{R}_{>0}$, then the restricted representation is the degenerate principal series of G obtained by inducing up a one-dimensional representation of a parabolic subgroup of G (see [6]).

In the influential paper [5], Howe showed that one can treat the classical invariant theory from a unified viewpoint - the dual pair. In this paper, we focus our attention on the dual pair $\left(\mathrm{O}(p, q), \mathrm{SL}_{2}(\mathbb{R})\right)$, both components of which are noncompact, and apply the representation theory of $\mathfrak{s l}_{2}$ to cut out (\mathfrak{g}, K)-modules, which we denote by $M^{+}(m)$ and $M^{-}(m), m=0,1,2, \ldots$, where $M^{+}(m)\left(\right.$ resp. $\left.M^{-}(m)\right)$ consists of all highest (resp. lowest) weight vectors with respect to the $\mathfrak{s l}_{2}$-action (see Definition 4.1 below for details). Note that $M^{+}(0)=M^{-}(0)$ by definition. We will see that such weight vectors are given in terms of harmonic polynomials and the Bessel functions of the first kind. Both $M^{ \pm}(m)$ should correspond to the $(m+1)$-dimensional irreducible representation of $\mathfrak{s l}_{2}$ under the Howe duality, and in fact are isomorphic to each other. They were originally considered in [12] without the condition of finite-dimensionality.

In the cases of the oscillator representations mentioned above, i.e., when $G=\operatorname{Sp}(n, \mathbb{R})$, $\mathrm{U}(p, q)$ and $\mathrm{O}^{*}(2 n)$, we note that the counterpart G^{\prime} of G for the dual pair $\left(G, G^{\prime}\right)$ is compact, hence, all its irreducible representations are finite-dimensional. Furthermore, the oscillator representations give examples of the minimal representations (we refer to [7] and the references therein for the definition of the minimal representation). When $G=\mathrm{O}(p, q)$, its minimal representation is discussed e.g. in [1,7-11, 16].

The main result of this paper is the K-type formula of $M^{ \pm}(m)$ for nonnegative integers m satisfying

$$
\begin{equation*}
m+3 \leqslant \frac{p+q}{2} \tag{1.1}
\end{equation*}
$$

when $p+q$ is even, from which one can show that $M^{ \pm}(m)$ are irreducible (\mathfrak{g}, K)-modules if $p, q \geqslant 2$ (Theorem 4.1). The fact that the elements of $M^{ \pm}(m)$ are described in terms of the Bessel function plays a role in the proof of our main result. The K-type formula of $M^{+}(0)=M^{-}(0)$, which is associated with the one-dimensional trivial representation of $\mathfrak{s l}_{2}$,
shows that it corresponds to the (\mathfrak{g}, K)-module of the minimal representation of $\mathrm{O}(p, q)$. We will see that the Gelfand-Kirillov dimension and the Bernstein degree of the irreducible $M^{ \pm}(m)$, which we denote by $\operatorname{Dim} M^{ \pm}(m)$ and $\operatorname{Deg} M^{ \pm}(m)$ respectively, are given by

$$
\begin{aligned}
& \operatorname{Dim} M^{ \pm}(m)=p+q-3 \\
& \operatorname{Deg} M^{ \pm}(m)=\frac{4(m+1)(p+q-4)!}{(p-2)!(q-2)!}
\end{aligned}
$$

(Corollary 4.1).
The rest of this paper is organized as follows. In $\S 2$, we calculate the moment map μ on W for $G=\mathrm{O}(p, q)$, and construct the representation π of \mathfrak{g} via canonical quantization of μ. Then we show that π is a partial Fourier transform of the differential representation of the left regular representation of G on $C^{\infty}(V)$. In $\S 3$, we give an $\mathfrak{s l}_{2}$-action that commutes with π, and find both highest weight vectors and lowest weight vectors with respect to the $\mathfrak{s l}_{2}$-action. We remark that such weight vectors are given in terms of the Bessel functions of the first kind. In $\S 4$, we introduce (\mathfrak{g}, K)-modules $M^{ \pm}(m)$ and prove that $M^{+}(m)$ and $M^{-}(m)$ are isomorphic to each other for any nonnegative integer m. When $p+q$ is even, we find the K-type formula of $M^{ \pm}(m)$ for m satisfying (1.1) and show that they are irreducible if p, q are $\geqslant 2$. As a corollary, we obtain the Gelfand-Kirillov dimension and the Bernstein degree of $M^{ \pm}(m)$.

Notation

Let \mathbb{N} denote the set of nonnegative integers $\{0,1,2, \ldots\}$, and $[p]$ the set $\{1,2, \ldots, p\}$ for a positive integer p. We write $\bar{l}:=p+i$ for $i \in[q]$ for the sake of simplicity. Finally, for $\alpha \in \mathbb{C}$ and $n \in \mathbb{N}$, we denote the rising and the falling factorials by

$$
(\alpha)_{n}:=\prod_{i=1}^{n}(\alpha+i-1) \quad \text { and } \quad(\alpha)_{n}^{-}:=\prod_{i=1}^{n}(\alpha-i+1),
$$

respectively.

2. Moment Map and its Quantization

Let G be the indefinite orthogonal group $\mathrm{O}(p, q)$, which we realize by

$$
\mathrm{O}(p, q)=\left\{\left.g \in \mathrm{GL}_{p+q}(\mathbb{R})\right|^{t} g I_{p, q} g=I_{p, q}\right\}
$$

with $I_{p, q}=\left[\begin{array}{lll}1_{p} & \\ & -1_{q}\end{array}\right]$. Let K be a maximal compact subgroup of G given by

$$
K=\left\{\left.\left[\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right] \in G \right\rvert\, a \in \mathrm{O}(p), d \in \mathrm{O}(q)\right\} \simeq \mathrm{O}(p) \times \mathrm{O}(q)
$$

We denote the Lie algebra of K and its complexification by \mathfrak{f}_{0} and \mathfrak{f} respectively.
Let $\left\{X_{i, j}^{ \pm}\right\}$be a basis for $\mathfrak{g}_{0}=\mathfrak{p}(p, q)$ given by

$$
\begin{array}{ll}
X_{i, j}^{+}=E_{i, j}-E_{j, i} & (i, j \in[p]) \\
X_{\bar{i}, \bar{J}}^{+}=E_{\bar{l}, \bar{J}}-E_{\bar{J}, \bar{i}} & (i, j \in[q]) \tag{2.1}\\
X_{i, j}^{-}=E_{i, \bar{J}}+E_{\bar{J}, i} & (i \in[p], j \in[q]),
\end{array}
$$

which also forms a basis for $\mathfrak{g}=\mathfrak{o}_{p+q}$, the complexification of $\mathfrak{g}_{0}=\mathfrak{o}(p, q)$. We often identify g^{*} with g via the invariant bilinear form B given by

$$
B(X, Y)=\frac{1}{2} \operatorname{tr}(X Y) \quad(X, Y \in \mathfrak{g})
$$

where \mathfrak{g}^{*} denotes the dual space of \mathfrak{g}. Finally, let $\mathfrak{g}=\mathfrak{f} \oplus \mathfrak{p}$ be the complexified Cartan decomposition of \mathfrak{g} with

$$
\mathfrak{f}=\sum_{i, j \in[p]} \mathbb{C} X_{i, j}^{+} \oplus \sum_{i, j \in[q]} \mathbb{C} X_{i, \bar{j}}^{+}, \quad \mathfrak{p}=\sum_{i \in[p], j \in[q]} \mathbb{C} X_{i, j}^{-} .
$$

Let W be the real vector space $\left(\mathbb{C}^{p+q}\right)_{\mathbb{R}}$ underlying the complex vector space \mathbb{C}^{p+q} :

$$
W=\left\{z=x+\mathrm{i} y \mid x={ }^{t}\left(x_{1}, \ldots, x_{p+q}\right), y={ }^{t}\left(y_{1}, \ldots, y_{p+q}\right) \in \mathbb{R}^{p+q}\right\},
$$

which is equipped with a symplectic form ω given by

$$
\begin{equation*}
\omega(z, w)=\operatorname{Im}\left(z^{*} I_{p, q} w\right) \quad(z, w \in W) \tag{2.2}
\end{equation*}
$$

Then G acts on (W, ω) symplectically via $z \mapsto g z$ (matrix multiplication) for $z \in W$ and $g \in G$. Furthermore, the action of G on (W, ω) is Hamiltonian, i.e., there exists a moment map $\mu: W \rightarrow \mathfrak{g}_{0}^{*}$, whose definition we briefly recall: if, in general, a Lie group G acts on a symplectic manifold (M, ω) symplectically, a smooth G-equivariant map $\mu: M \rightarrow \mathfrak{g}_{0}^{*}$ that satisfies

$$
\begin{equation*}
\mathrm{d}\langle\mu, X\rangle=\iota\left(X_{M}\right) \omega \quad \text { for all } X \in \mathfrak{g}_{0} \tag{2.3}
\end{equation*}
$$

is called a moment map, where ι stands for the contraction and X_{M} denotes the vector field on M given by

$$
X_{M}(p)=\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} \exp (-t X) \cdot p \quad(p \in M)
$$

Under the identification that $e_{i}:={ }^{t}(0, \ldots, \stackrel{i}{1}, \ldots, 0) \leftrightarrow \partial_{x_{i}}$ and $\mathrm{i} e_{i} \leftrightarrow \partial_{y_{i}}$ for $i=$ $1,2, \ldots, p+q$, the symplectic form ω given in (2.2) can be rewritten as

$$
\omega=\sum_{i=1}^{p+q} \epsilon_{i} \mathrm{~d} x_{i} \wedge \mathrm{~d} y_{i}
$$

with $\epsilon_{i}=1$ for $i \in[p]$ and $\epsilon_{p+i}=-1$ for $i \in[q]$.
Proposition 2.1. The action of $G=\mathrm{O}(p, q)$ on (W, ω) is Hamiltonian, and the moment map $\mu: W \rightarrow \mathfrak{g}_{0}^{*} \simeq \mathfrak{g}_{0}$ is given by

$$
\begin{align*}
\mu(z) & =-\frac{\mathrm{i}}{2}\left(z z^{*}-{ }^{t}\left(z z^{*}\right)\right) I_{p, q} \\
& =\left(-x^{t} y+y^{t} x\right) I_{p, q} \tag{2.4}\\
& =\left[\begin{array}{cc}
-x^{\prime t} y^{\prime}+y^{\prime t} x^{\prime} & x^{\prime t} y^{\prime \prime}-y^{\prime t} x^{\prime \prime} \\
-x^{\prime \prime} y^{\prime}+y^{\prime \prime \prime} x^{\prime} & x^{\prime \prime \prime} y^{\prime \prime}-y^{\prime \prime \prime} x^{\prime \prime}
\end{array}\right]
\end{align*}
$$

for $z=x+\mathrm{i} y \in W$ with $x={ }^{t}\left(x^{\prime}, x^{\prime \prime}\right), y={ }^{t}\left(y^{\prime}, y^{\prime \prime}\right) \in \mathbb{R}^{p+q}$ and $x^{\prime}, y^{\prime} \in \mathbb{R}^{p}, x^{\prime \prime}, y^{\prime \prime} \in \mathbb{R}^{q a}$.

Proof. Using the formula

$$
\langle\mu(z), X\rangle=\frac{1}{2} \omega(z, X z)
$$

(see e.g. [2, Proposition 1.4.6]), which, in our case, can be written as

$$
B(\mu(z), X)=\frac{1}{2} B\left(\left(z z^{*}-\bar{z}^{t} z\right) I_{p, q}, X\right)
$$

for all $X \in \mathfrak{g}_{0}$, we obtain (2.4) immediately.
Remark 2.1. Recall that the moment map $\mu_{\mathrm{U}}: W \rightarrow \mathfrak{u}(p, q)^{*} \simeq \mathfrak{u}(p, q)$ for the action of $\mathrm{U}(p, q)$ on our symplectic vector space (W, ω) is given by

$$
\mu_{\mathrm{U}}(z)=-\mathrm{i} z z^{*} I_{p, q} \quad(z=x+\mathrm{i} y \in W)
$$

where we identify $\mathfrak{u}(p, q)^{*}$ with $\mathfrak{u}(p, q)$ via the invariant bilinear form B given by $B(X, Y)=$ $(1 / 2) \operatorname{tr}(X Y)$. Therefore, the moment map μ in the proposition is related to μ_{U} by

$$
\mu(z)=\frac{\mu_{\mathrm{U}}(z)+\overline{\mu_{\mathrm{U}}(z)}}{2}
$$

Namely, one has $\mu=\operatorname{Re} \mu_{\mathrm{U}}$.
We define a Poisson bracket by

$$
\{f, g\}=\omega\left(\xi_{g}, \xi_{f}\right)
$$

where ξ_{f} denotes the Hamiltonian vector field on W corresponding to $f \in C^{\infty}(W)$, i.e. the vector field that satisfies $\iota\left(\xi_{f}\right) \omega=\mathrm{d} f$. Then the Poisson bracket among the coordinate functions are given by

$$
\left\{x_{i}, y_{j}\right\}=-\delta_{i, j} \epsilon_{i}, \quad\left\{x_{i}, x_{j}\right\}=\left\{y_{i}, y_{j}\right\}=0
$$

for $i, j=1,2, \ldots, p+q$. Dirac's quantization conditions requires that

$$
\left\{f_{1}, f_{2}\right\}=f_{3} \quad \text { implies } \quad\left[\hat{f}_{1}, \hat{f}_{2}\right]=-\mathrm{i} \hbar \hat{f}_{3}
$$

for $f_{i} \in C^{\infty}(W)$ (see e.g. [15]). Thus, we quantize the coordinate functions as follows:

$$
\begin{array}{lll}
\hat{x}_{i}=x_{i}, & \hat{y}_{i}=-\mathrm{i} \hbar \partial_{x_{i}}, & (i=1, \ldots, p), \\
\hat{x}_{\bar{J}}=-\mathrm{i} \hbar \partial_{y_{\bar{J}}}, & \hat{y}_{\bar{J}}=y_{\bar{J}}, & (j=1, \ldots, q), \tag{2.5}
\end{array}
$$

where $\partial_{x_{i}}$ and $\partial_{y_{\bar{J}}}$ denote $\partial / \partial x_{i}$ and $\partial / \partial y_{\bar{J}}$ respectively. In what follows, we set $\hbar=1$ for brevity.

The quantization (2.5) corresponds to a Lagrangian subspace V of W given by

$$
\begin{equation*}
V=\left\langle e_{1}, \ldots, e_{p}, \mathrm{i} e_{\overline{1}}, \ldots, \mathrm{i} e_{\bar{q}}\right\rangle_{\mathbb{R}} \tag{2.6}
\end{equation*}
$$

[^0]in the sense that the quantized operators are realized in $\mathcal{P D}(V)$, the ring of polynomial coefficient differential operators on V. Therefore, the quantized moment map $\hat{\mu}$ is given by
\[

\hat{\mu}=\left(-\hat{x}^{t} \hat{y}+\hat{y}^{t} \hat{x}\right) I_{p, q}=\left[$$
\begin{array}{rr}
\mathrm{i}\left(x^{\prime} \partial_{x^{\prime}}-\partial_{x^{\prime}} t^{\prime} x^{\prime}\right) & x^{\prime t} y^{\prime \prime}+\partial_{x^{\prime}} \partial_{y^{\prime \prime}} \\
\partial_{y^{\prime \prime}} \partial_{x^{\prime}}+y^{\prime \prime} x^{\prime} & \mathrm{i}\left(y^{\prime \prime t} \partial_{y^{\prime \prime}}-\partial_{y^{\prime \prime}} t^{\prime \prime}\right)
\end{array}
$$\right],
\]

where

$$
\begin{aligned}
& \hat{x}={ }^{t}\left(\hat{x}_{1}, \ldots, \hat{x}_{p+q}\right)={ }^{t}\left(x^{\prime},-\mathrm{i} \partial_{y^{\prime \prime}}\right), \\
& \hat{y}={ }^{t}\left(\hat{y}_{1}, \ldots, \hat{y}_{p+q}\right)={ }^{t}\left(-\mathrm{i} \partial_{x^{\prime}}, y^{\prime \prime}\right),
\end{aligned}
$$

and

$$
\begin{array}{rlrl}
x^{\prime} & =t\left(x_{1}, \ldots, x_{p}\right), & & \partial_{x^{\prime}}={ }^{t}\left(\partial_{x_{1}}, \ldots, \partial_{x_{p}}\right), \\
y^{\prime \prime}={ }^{t}\left(y_{\overline{1}}, \ldots, y_{\bar{q}}\right), & \partial_{y^{\prime \prime}}={ }^{t}\left(\partial_{y_{\overline{1}}}, \ldots, \partial_{y_{\bar{q}}}\right) .
\end{array}
$$

Note that $x_{1}, \ldots, x_{p}, y_{\overline{1}}, \ldots, y_{\bar{q}}$ are considered to be the coordinate functions on V with respect to the basis $e_{1}, \ldots, e_{p}, \mathrm{i} e_{\overline{1}}, \ldots, \mathrm{i} e_{\bar{q}}$.

Theorem 2.1. For $X \in \mathfrak{g}$, set $\pi(X):=\mathrm{i}\langle\hat{\mu}, X\rangle$. Then $\pi: \mathfrak{g} \rightarrow \mathcal{P} \mathcal{D}(V)$ is a Lie algebra homomorphism. In terms of the basis (2.1), it is given by

$$
\pi(X)= \begin{cases}-x_{j} \partial_{x_{i}}+x_{i} \partial_{x_{j}} & \text { if } X=X_{i, j}^{+} \tag{2.7}\\ -y_{\bar{J}} \partial_{y_{\bar{\imath}}}+y_{\bar{\imath}} \partial_{y_{\bar{J}}} & \text { if } X=X_{\bar{i}, \bar{\jmath}}^{+} \\ \mathrm{i}\left(x_{i} y_{\bar{J}}+\partial_{x_{i}} \partial_{y_{\bar{J}}}\right) & \text { if } \quad X=X_{i, j}^{-}\end{cases}
$$

Proof. This is proved in the same manner as [3, Theorem 2.3] (or, one can verify the commutation relations by direct calculation).

There is another canonical quantization that corresponds to the same Lagrangian subspace V of W as given in (2.6). Namely, if we quantize the coordinate functions as

$$
\begin{array}{lll}
\hat{x}_{i}=x_{i}, & \hat{y}_{i}=-\mathrm{i} \partial_{x_{i}}, & (i=1, \ldots, p), \\
\hat{x}_{\bar{J}}=y_{\bar{J}}, & \hat{y}_{\bar{J}}=\mathrm{i} \partial_{y_{j}}, & (j=1, \ldots, q), \tag{2.8}
\end{array}
$$

then the quantized moment map, which we denote by $\hat{\mu}^{\#}$, is given by

$$
\hat{\mu}^{\#}=\left(-\hat{x}^{t} \hat{y}+\hat{y}^{t} \hat{x}\right) I_{p, q}=\mathrm{i}\left[\begin{array}{cc}
x^{\prime} t \partial_{x^{\prime}}-\partial_{x^{\prime}} x^{\prime} & x^{\prime} \partial_{y^{\prime \prime}}+\partial_{x^{\prime}}{ }^{t} y^{\prime \prime} \\
y^{\prime \prime t} \partial_{x^{\prime}}+\partial_{y^{\prime \prime}} x^{\prime} y^{\prime \prime} y_{y^{\prime \prime}}-\partial_{y^{\prime \prime}} y^{\prime \prime} y^{\prime \prime}
\end{array}\right],
$$

where

$$
\begin{aligned}
& \hat{x}={ }^{t}\left(\hat{x}_{1}, \ldots, \hat{x}_{p+q}\right)={ }^{t}\left(x^{\prime}, y^{\prime \prime}\right), \\
& \hat{y}={ }^{t}\left(\hat{y}_{1}, \ldots, \hat{y}_{p+q}\right)={ }^{t}\left(-\mathrm{i} \partial_{x^{\prime}}, \mathrm{i} \partial_{y^{\prime \prime}}\right) .
\end{aligned}
$$

Hence one obtains a representation $\pi^{\sharp}: \mathfrak{g} \rightarrow \mathcal{P} \mathcal{D}(V)$ if one sets $\pi^{\sharp}(X):=\mathrm{i}\left\langle\hat{\mu}^{\sharp}, X\right\rangle$ for $X \in \mathfrak{g}$. It is given in terms of the basis (2.1) by

$$
\pi^{\sharp}(X)= \begin{cases}-x_{j} \partial_{x_{i}}+x_{i} \partial_{x_{j}} & \text { if } \quad X=X_{i, j}^{+} ; \tag{2.9}\\ -y_{\bar{J}} \partial_{y_{\bar{i}}}+y_{i} \partial_{y_{\bar{J}}} & \text { if } \quad X=X_{i, j}^{+} ; \\ -\left(x_{i} \partial_{y_{j}}+y_{\bar{J}} \partial_{x_{i}}\right) & \text { if } \quad X=X_{i, j}^{-} .\end{cases}
$$

Remark 2.2. (i) Comparing (2.8) with (2.5), one sees that π^{\sharp} is related to π through the partial Fourier transform on \mathbb{R}^{p+q} with respect to the variables $y_{\overline{1}}, \ldots, y_{\bar{q}}$. In fact, if we denote the dual variable of $y_{\bar{J}}$ by $\eta_{\bar{J}}, j=1,2, \ldots, q$, then π and π^{\sharp} interchange with each other under the correspondence

$$
-\mathrm{i} \partial_{y_{\bar{J}}} \longleftrightarrow \eta_{\bar{J}}, \quad y_{\bar{J}} \longleftrightarrow \mathrm{i} \partial_{\eta_{\bar{J}}} \quad(j=1, \ldots, q)
$$

the former operators $-\mathrm{i} \partial_{y_{\bar{J}}}$ and $\eta_{\bar{J}}$ are the realizations of $\hat{x}_{\bar{J}}$, while the latter operators $y_{\bar{J}}$ and $\mathrm{i} \partial_{\eta_{\bar{J}}}$ are the realizations of $\hat{y}_{\bar{J}}$.
(ii) Recall that one can obtain π^{\sharp} by differentiating the left regular representation of $G=\mathrm{O}(p, q)$ on $C^{\infty}(V)$, the space of complex-valued smooth functions on V, where G acts on V by matrix multiplication under the identification of V with \mathbb{R}^{p+q} given by ${ }^{t}\left(x^{\prime}, \mathrm{i} y^{\prime \prime}\right) \leftrightarrow^{t}\left(x^{\prime}, y^{\prime \prime}\right)$ (see e.g. $\left.[6,12]\right)$. As one can see from (2.7) and $(2.9), \pi^{\sharp}(X)$ coincides with $\pi(X)$ for all $X \in \mathfrak{f}$. Thus, the action π restricted to \mathfrak{f}_{0} lifts to the action of K on $C^{\infty}(V)$.

3. Dual Pair $\left(\mathrm{O}(p, q), \mathfrak{s I}_{2}(\mathbb{R})\right)$

Henceforth, let us denote $x^{\prime}={ }^{t}\left(x_{1}, \ldots, x_{p}\right)$ and $y^{\prime \prime}={ }^{t}\left(y_{\overline{1}}, \ldots, y_{\bar{q}}\right)$ by

$$
x={ }^{t}\left(x_{1}, \ldots, x_{p}\right) \quad \text { and } \quad y={ }^{t}\left(y_{1}, \ldots, y_{q}\right)
$$

respectively for the sake of simplicity if there exists no risk of confusion. Namely, we regard $\left(x_{1}, \ldots, x_{p}\right)$ and $\left(y_{1}, \ldots, y_{q}\right)$ as the canonical coordinate functions on \mathbb{R}^{p} and on \mathbb{R}^{q} respectively.

If we denote the Casimir element of \mathfrak{g} by $\Omega_{\mathfrak{g}}$, then the corresponding Casimir operator is given by

$$
\begin{align*}
\pi\left(\Omega_{\mathfrak{g}}\right)= & \left(E_{x}-E_{y}\right)^{2}+(p-q)\left(E_{x}-E_{y}\right)-2\left(E_{x}+E_{y}\right) \\
& -\left(r_{x}^{2} r_{y}^{2}+r_{x}^{2} \Delta_{x}+r_{y}^{2} \Delta_{y}+\Delta_{x} \Delta_{y}\right)-p q \tag{3.1}
\end{align*}
$$

where

$$
\begin{array}{rlrl}
E_{x} & =\sum_{i \in[p]} x_{i} \partial_{x_{i}}, & r_{x}^{2}=\sum_{i \in[p]} x_{i}^{2}, & \Delta_{x}=\sum_{i \in[p]} \partial_{x_{i}}^{2}, \\
E_{y}=\sum_{j \in[q]} y_{j} \partial_{y_{j}}, & r_{y}^{2}=\sum_{j \in[q]} y_{j}^{2}, & \Delta_{y}=\sum_{j \in[q]} \partial_{y_{j}}^{2} . \tag{3.2}
\end{array}
$$

Now, taking account of the fact that our realization of the representation operators of \mathfrak{g} given in (2.7) is a partial Fourier transform of the ones given in $[6,12]$ as we mentioned in Remark 2.2 (i) above, we define elements H, X^{+}, X^{-}of $\mathcal{P D}(V)$ by

$$
\begin{equation*}
H=-E_{x}-\frac{p}{2}+E_{y}+\frac{q}{2}, \quad X^{+}=-\frac{1}{2}\left(\Delta_{x}+r_{y}^{2}\right), \quad X^{-}=\frac{1}{2}\left(r_{x}^{2}+\Delta_{y}\right) . \tag{3.3}
\end{equation*}
$$

Then, it is immediate to see that the commutation relations among them are given by

$$
\left[H, X^{+}\right]=2 X^{+}, \quad\left[H, X^{-}\right]=-2 X^{-}, \quad\left[X^{+}, X^{-}\right]=H .
$$

Proposition 3.1. Let $\mathfrak{g}^{\prime}:=\mathbb{C}$-span $\left\{H, X^{+}, X^{-}\right\}$. Then \mathfrak{g}^{\prime} is a Lie subalgebra of $\mathcal{P D}(V)^{\mathfrak{g}}$ isomorphic to $\mathfrak{I I}_{2}\left(=\mathfrak{s l}_{2}(\mathbb{C})\right.$), where $\mathcal{P} \mathcal{D}(V)^{\mathfrak{g}}$ denotes the commutant of \mathfrak{g} in $\mathcal{P} \mathcal{D}(V)$.

Proof. Note that $\pi\left(X_{i, j}^{+}\right), i, j \in[p]$, span the Lie subalgebra isomorphic to \mathfrak{o}_{p} commuting with E_{x}, Δ_{x} and r_{x}^{2}, and that $\pi\left(X_{i, \bar{J}}^{+}\right), i, j \in[q]$, span the Lie subalgebra isomorphic to \mathfrak{o}_{q} commuting with E_{y}, Δ_{y} and r_{y}^{2}. Hence, it remains to show that each $\pi\left(X_{i, j}^{-}\right)$commutes with H, X^{+}and X^{-}given in (3.3)

We will only show here that $\left[\pi\left(X_{i, j}^{-}\right), X^{+}\right]=0$. The other cases can be shown similarly. Now, one sees

$$
\begin{aligned}
-2 \mathrm{i}\left[\pi\left(X_{i, j}^{-}\right), X^{+}\right] & =\left[x_{i} y_{j}+\partial_{x_{i}} \partial_{y_{j}},-\Delta_{x}-r_{y}^{2}\right] \\
& =\sum_{k=1}^{p}\left[\partial_{x_{k}}^{2}, x_{i}\right] y_{j}-\sum_{l=1}^{q} \partial_{x_{i}}\left[\partial_{y_{j}}, y_{l}^{2}\right] \\
& =\sum_{k=1}^{p} 2 \delta_{k, i} \partial_{x_{k}} y_{j}-\sum_{l=1}^{q} 2 \partial_{x_{i}} \delta_{j, l} y_{l} \\
& =2 \partial_{x_{i}} y_{j}-2 \partial_{x_{i}} y_{j}=0 .
\end{aligned}
$$

This completes the proof.
If one denotes the Casimir element of \mathfrak{g}^{\prime} by $\Omega_{\mathfrak{g}^{\prime}}$, then the corresponding Casimir operator that is defined by

$$
\begin{aligned}
\pi\left(\Omega_{\mathrm{g}^{\prime}}\right) & =H^{2}+2\left(X^{+} X^{-}+X^{-} X^{+}\right) \\
& =H^{2}-2 H+4 X^{+} X^{-} \\
& =H^{2}+2 H+4 X^{-} X^{+}
\end{aligned}
$$

is concretely written in terms of the operators given by (3.2) as follows:

$$
\begin{align*}
\pi\left(\Omega_{\mathfrak{g}^{\prime}}\right)= & \left(E_{x}-E_{y}\right)^{2}+(p-q)\left(E_{x}-E_{y}\right)-2\left(E_{x}+E_{y}\right) \\
& -\left(r_{x}^{2} r_{y}^{2}+r_{x}^{2} \Delta_{x}+r_{y}^{2} \Delta_{y}+\Delta_{x} \Delta_{y}\right)+\frac{1}{4}(p-q)^{2}-(p+q) \tag{3.4}
\end{align*}
$$

It follows from (3.1) and (3.4) that

$$
\pi\left(\Omega_{\mathrm{g}}\right)=\pi\left(\Omega_{\mathrm{g}^{\prime}}\right)-\frac{1}{4}(p+q)^{2}+(p+q)
$$

(see [4, 12]).
In what follows, we denote by $\mathcal{H}^{k}\left(\mathbb{R}^{n}\right)$ the space of homogeneous harmonic polynomials on \mathbb{R}^{n} of degree k and set $\mathcal{H}\left(\mathbb{R}^{n}\right):=\bigoplus_{k=0}^{\infty} \mathcal{H}^{k}\left(\mathbb{R}^{n}\right)$. It is well known that $\mathcal{H}^{k}\left(\mathbb{R}^{n}\right)$ is an irreducible $\mathrm{O}(n)$-module and its dimension is given by

$$
\begin{aligned}
\operatorname{dim} \mathcal{H}^{k}\left(\mathbb{R}^{n}\right) & =\binom{k+n-1}{n-1}-\binom{k+n-3}{n-1} \\
& =\frac{(k+n-3)!}{k!(n-2)!}(2 k+n-2)
\end{aligned}
$$

if $n \geqslant 2$ and $k \in \mathbb{N}$, where $\binom{v}{i}$ denotes the binomial coefficient. Note that it can be further rewritten as

$$
\begin{equation*}
\operatorname{dim} \mathcal{H}^{k}\left(\mathbb{R}^{n}\right)=\frac{2(k+n / 2-1)}{(n-2)!}(k+1)(k+2) \cdots(k+n-3) . \tag{3.5}
\end{equation*}
$$

Now, we will find a highest weight vector with respect to the \mathfrak{g}^{\prime}-action (3.3), i.e. a function f on V which satisfies

$$
\begin{equation*}
H f=\lambda f \quad \text { and } \quad X^{+} f=0 \tag{3.6}
\end{equation*}
$$

for some $\lambda \in \mathbb{C}$. Taking account of the fact that the algebra of polynomial functions on V, which we denote by $\mathcal{P}(V)$, can be written as

$$
\begin{aligned}
\mathcal{P}(V) & \simeq \mathbb{C}\left[x_{1}, \ldots, x_{p}\right] \otimes \mathbb{C}\left[y_{1}, \ldots, y_{q}\right] \\
& \simeq \bigoplus_{k=0}^{\infty}\left(\mathbb{C}\left[r_{x}^{2}\right] \otimes \mathcal{H}^{k}\left(\mathbb{R}^{p}\right)\right) \otimes \bigoplus_{l=0}^{\infty}\left(\mathbb{C}\left[r_{y}^{2}\right] \otimes \mathcal{H}^{l}\left(\mathbb{R}^{q}\right)\right) \\
& \simeq \bigoplus_{k, l=0}^{\infty} \mathcal{H}^{k}\left(\mathbb{R}^{p}\right) \otimes \mathcal{H}^{l}\left(\mathbb{R}^{q}\right) \otimes \mathbb{C}\left[r_{x}^{2}, r_{y}^{2}\right],
\end{aligned}
$$

we will seek for a function that satisfies (3.6) of the form

$$
\begin{equation*}
f(x, y)=h_{1}(x) h_{2}(y) \phi\left(r_{x}^{2}, r_{y}^{2}\right) \tag{3.7}
\end{equation*}
$$

where $h_{1} \in \mathcal{H}^{k}\left(\mathbb{R}^{p}\right), h_{2} \in \mathcal{H}^{l}\left(\mathbb{R}^{q}\right)$ are harmonic polynomials, and $\phi(s, t) \in \mathbb{C}[[s, t]]$ is a formal power series (Caution: we do not assume that ϕ is a polynomial). Namely, our function f on V lives in the space $\tilde{\varepsilon}$ defined by

$$
\begin{equation*}
\tilde{\mathcal{E}}:=\bigoplus_{k, l=0}^{\infty} \mathcal{H}^{k}\left(\mathbb{R}^{p}\right) \otimes \mathcal{H}^{l}\left(\mathbb{R}^{q}\right) \otimes \mathbb{C}\left[\left[r_{x}^{2}, r_{y}^{2}\right]\right] \quad \text { (algebraic direct sum) } \tag{3.8}
\end{equation*}
$$

Recall that the action π of \mathfrak{E}_{0} lifts to the action of K on $\tilde{\varepsilon}$ as we mentioned in Remark 2.2 (ii), which we denote by the same letter π.

Lemma 3.1. Let $\Delta=\sum_{i=1}^{n} \partial_{x_{i}}^{2}$ and $r^{2}=\sum_{i=1}^{n} x_{i}^{2}$. For a homogeneous harmonic polynomial $h=h\left(x_{1}, \ldots, x_{n}\right)$ on \mathbb{R}^{n} of degree d and for a smooth function $\varphi(u)$ in a single variable u, we have

$$
\begin{equation*}
\Delta\left(h \varphi\left(r^{2}\right)\right)=(4 d+2 n) h \varphi^{\prime}\left(r^{2}\right)+4 r^{2} h \varphi^{\prime \prime}\left(r^{2}\right) . \tag{3.9}
\end{equation*}
$$

Proof. Since $\partial_{x_{i}} \varphi\left(r^{2}\right)=2 x_{i} \varphi^{\prime}\left(r^{2}\right)$ and $\partial_{x_{i}}^{2} \varphi\left(r^{2}\right)=2 \varphi^{\prime}\left(r^{2}\right)+4 x_{i}^{2} \varphi^{\prime \prime}\left(r^{2}\right)$, one obtains

$$
\Delta \varphi\left(r^{2}\right)=2 n \varphi^{\prime}\left(r^{2}\right)+4 r^{2} \varphi^{\prime \prime}\left(r^{2}\right)
$$

Thus,

$$
\begin{aligned}
\Delta\left(h \varphi\left(r^{2}\right)\right) & =\sum_{i=1}^{n}\left(\partial_{x_{i}}^{2} h \cdot \varphi\left(r^{2}\right)+2 \partial_{x_{i}} h \cdot \partial_{x_{i}} \varphi\left(r^{2}\right)+h \cdot \partial_{x_{i}}^{2} \varphi\left(r^{2}\right)\right) \\
& =4 d h \varphi^{\prime}\left(r^{2}\right)+h \Delta \varphi\left(r^{2}\right) \\
& =4 d h \varphi^{\prime}\left(r^{2}\right)+h\left(2 n \varphi^{\prime}\left(r^{2}\right)+4 r^{2} \varphi^{\prime \prime}\left(r^{2}\right)\right) \\
& =(4 d+2 n) h \varphi^{\prime}\left(r^{2}\right)+4 r^{2} h \varphi^{\prime \prime}\left(r^{2}\right) .
\end{aligned}
$$

This completes the proof.

For $h_{1} \in \mathcal{H}^{k}\left(\mathbb{R}^{p}\right)\left(\right.$ resp. $\left.h_{2} \in \mathcal{H}^{l}\left(\mathbb{R}^{q}\right)\right)$, we define its shifted degree by $\kappa_{+}\left(h_{1}\right):=k+p / 2$ (resp. $\kappa_{-}\left(h_{2}\right):=l+q / 2$), which we denote just by κ_{+}(resp. κ_{-}) if there is no risk of confusion.

It follows from Lemma 3.1 that if f is of the form in (3.7) then

$$
\begin{aligned}
X^{+} f & =-\frac{1}{2}\left(\Delta_{x}\left(h_{1} h_{2} \phi\right)+r_{y}^{2} h_{1} h_{2} \phi\right) \\
& =-2 h_{1} h_{2}\left(r_{x}^{2}\left(\partial_{s}^{2} \phi\right)\left(r_{x}^{2}, r_{y}^{2}\right)+\kappa_{+}\left(\partial_{s} \phi\right)\left(r_{x}^{2}, r_{y}^{2}\right)+\frac{r_{y}^{2}}{4} \phi\left(r_{x}^{2}, r_{y}^{2}\right)\right),
\end{aligned}
$$

which shows that $f=h_{1}(x) h_{2}(y) \phi\left(r_{x}^{2}, r_{y}^{2}\right)$ satisfies $X^{+} f=0$ if and only if ϕ is a solution to a differential equation

$$
\begin{equation*}
s \partial_{s}^{2} \phi+\kappa_{+} \partial_{s} \phi+\frac{t}{4} \phi=0 \tag{3.10}
\end{equation*}
$$

with $\kappa_{+}=\kappa_{+}\left(h_{1}\right)=k+p / 2$. Solving the differential equation (3.10) by power series, one obtains that

$$
\begin{equation*}
\phi(s, t)=a_{0} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!\left(\kappa_{+}\right)_{n}}\left(\frac{s t}{4}\right)^{n} \tag{3.11}
\end{equation*}
$$

where a_{0} is an arbitrary formal power series in t. Note that if one defines a power series Ψ_{α} by

$$
\begin{equation*}
\Psi_{\alpha}(u):=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!(\alpha)_{n}} u^{n}=1-\frac{u}{\alpha}+\frac{u^{2}}{2!\alpha(\alpha+1)}-\frac{u^{3}}{3!\alpha(\alpha+1)(\alpha+2)}+\cdots \tag{3.12}
\end{equation*}
$$

for $\alpha \in \mathbb{C} \backslash(-\mathbb{N})$, then it converges on the whole \mathbb{C} and is a unique solution to a differential equation

$$
\begin{equation*}
u \Psi_{\alpha}^{\prime \prime}(u)+\alpha \Psi_{\alpha}^{\prime}(u)+\Psi_{\alpha}(u)=0 \tag{3.13}
\end{equation*}
$$

that satisfies the initial condition $\Psi_{\alpha}(0)=1$.
In the sequel, we set

$$
\begin{equation*}
\psi_{\alpha}^{(n)}:=\Psi_{\alpha}^{(n)}\left(r_{x}^{2} r_{y}^{2} / 4\right) \quad(n \in \mathbb{N}) \tag{3.14}
\end{equation*}
$$

for brevity, where $\Psi_{\alpha}^{(n)}(u)$ denotes the n-th derivative of $\Psi_{\alpha}(u)$ in u.
If, in addition, f satisfies that $H f=\lambda f$ for some $\lambda \in \mathbb{C}$, then the factor a_{0} in (3.11) is equal to $t^{\mu_{-}}$up to a constant multiple, with $\mu_{-}=(1 / 2)\left(\lambda+\kappa_{+}-\kappa_{-}\right) \in \mathbb{N}, \kappa_{+}=\kappa_{+}\left(h_{1}\right)$ and $\kappa_{-}=\kappa_{-}\left(h_{2}\right)$.

Thus, for given $h_{1} \in \mathcal{H}^{k}\left(\mathbb{R}^{p}\right)$ and $h_{2} \in \mathcal{H}^{l}\left(\mathbb{R}^{q}\right)$, if $f=f(x, y)$ of the form (3.7) is a highest weight vector with respect to the \mathfrak{g}^{\prime}-action, i.e. it satisfies (3.6), then $\phi\left(r_{x}^{2}, r_{y}^{2}\right)$ is a constant multiple of $r_{y}^{2 \mu_{-}} \psi_{\kappa_{+}}$, and the weight of f is given by

$$
\begin{equation*}
\lambda=-\kappa_{+}+\kappa_{-}+2 \mu_{-} \quad\left(\mu_{-} \in \mathbb{N}\right) \tag{3.15}
\end{equation*}
$$

Similarly, for given $h_{1} \in \mathcal{H}^{k}\left(\mathbb{R}^{p}\right)$ and $h_{2} \in \mathcal{H}^{l}\left(\mathbb{R}^{q}\right)$, one can show that if $f=f(x, y)$ of the form (3.7) is a lowest weight vector with respect to the \mathfrak{g}^{\prime}-action, i.e. it satisfies

$$
\begin{equation*}
H f=\lambda f \quad \text { and } \quad X^{-} f=0 \tag{3.16}
\end{equation*}
$$

for some $\lambda \in \mathbb{C}$, then $\phi\left(r_{x}^{2}, r_{y}^{2}\right)$ is a constant multiple of $r_{x}^{2 \mu_{+}} \psi_{K_{-}}$, and the weight of f is given by

$$
\begin{equation*}
\lambda=-\kappa_{+}+\kappa_{-}-2 \mu_{+} \quad\left(\mu_{+} \in \mathbb{N}\right) \tag{3.17}
\end{equation*}
$$

Let us summarize the above argument in the following.
Proposition 3.2. Given $h_{1} \in \mathcal{H}^{k}\left(\mathbb{R}^{p}\right)$ and $h_{2} \in \mathcal{H}^{l}\left(\mathbb{R}^{q}\right)$, let $f=f(x, y)$ be a function of the form

$$
\begin{equation*}
f(x, y)=h_{1}(x) h_{2}(y) \phi\left(r_{x}^{2}, r_{y}^{2}\right) \quad\left(\phi\left(r_{x}^{2}, r_{y}^{2}\right) \in \mathbb{C}\left[\left[r_{x}^{2}, r_{y}^{2}\right]\right]\right) \tag{3.18}
\end{equation*}
$$

If f given in (3.18) is a highest (resp. lowest) weight vector with respect to the \mathfrak{g}^{\prime}-action, i.e. it satisfies (3.6) (resp. (3.16)), then $\phi\left(r_{x}^{2}, r_{y}^{2}\right)$ is a constant multiple of $r_{y}^{2 \mu_{-}} \psi_{\kappa_{+}}$(resp. $r_{x}^{2 \mu_{+}} \psi_{\kappa_{-}}$) and the weight λ of f is equal to $-\kappa_{+}+\kappa_{-}+2 \mu_{-}$(resp. $-\kappa_{+}+\kappa_{-}-2 \mu_{+}$).

Here $\kappa_{+}=\kappa_{+}\left(h_{1}\right)=k+p / 2, \kappa_{-}=\kappa_{-}\left(h_{2}\right)=l+q / 2, \mu_{+}, \mu_{-} \in \mathbb{N}$, and $\psi_{\kappa_{ \pm}}$is an element of $\mathbb{C}\left[\left[r_{x}^{2}, r_{y}^{2}\right]\right]$ given by (3.14) with $\alpha=\kappa_{ \pm}$.

Taking account of the discussion so far, let us introduce the subspace \mathcal{E} of $\tilde{\mathcal{E}}$ by

Then one will find that \mathcal{E} is stable under the action of (\mathfrak{g}, K) as well as that of \mathfrak{g}^{\prime} (see Propositions 3.3 and 3.4 below).

Remark 3.1. (i) The function Ψ_{α} given in (3.12) can be written in terms of the Bessel function J_{v} of the first kind of order v

$$
J_{v}(t)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!\Gamma(n+v+1)}\left(\frac{t}{2}\right)^{v+2 n}
$$

that solves the Bessel's differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} w}{\mathrm{~d} t^{2}}+\frac{1}{t} \frac{\mathrm{~d} w}{\mathrm{~d} t}+\left(1-\frac{v^{2}}{t^{2}}\right) w=0 \tag{3.19}
\end{equation*}
$$

(see e.g. [14]). Namely, one has

$$
\begin{equation*}
\Psi_{\alpha}(u)=\Gamma(\alpha) u^{-(\alpha-1) / 2} J_{\alpha-1}\left(2 u^{1 / 2}\right) . \tag{3.20}
\end{equation*}
$$

Therefore,

$$
\psi_{\alpha}=\Gamma(\alpha)\left(\frac{r_{x} r_{y}}{2}\right)^{-(\alpha-1)} J_{\alpha-1}\left(r_{x} r_{y}\right)
$$

Note that (3.13) corresponds to (3.19) under (3.20).
(ii) Recall that our representation π is related to π^{\sharp} via the partial Fourier transform with respect to y_{1}, \ldots, y_{q}, as we mentioned in Remark 2.2 (i). Namely, one can obtain π^{\sharp} by replacing $-\mathrm{i} \partial_{y_{j}}$ and y_{j} in π by η_{j} and $\mathrm{i} \partial_{\eta_{j}}, j=1, \ldots, q$, respectively. Under this correspondence, one finds that $H=-E_{x}-p / 2+E_{y}+q / 2$ and $X^{+}=-\frac{1}{2}\left(\Delta_{x}+r_{y}^{2}\right)$ transform,
up to constant multiples, into the shifted degree operator $\tilde{E}_{p, q}$ and the d'Alembertian $\square_{p, q}$ on \mathbb{R}^{p+q} that are given by

$$
\begin{aligned}
& \tilde{E}_{p, q}=\sum_{i=1}^{p} x_{i} \partial_{x_{i}}+\sum_{j=1}^{q} \eta_{j} \partial_{\eta_{j}}+\frac{p+q}{2}, \\
& \square_{p, q}=\sum_{i=1}^{p} \partial_{x_{i}}^{2}-\sum_{j=1}^{q} \partial_{\eta_{j}}^{2},
\end{aligned}
$$

respectively. Therefore, the highest weight vector f satisfying $H f=\lambda f$ for some $\lambda \in \mathbb{C}$ and $X^{+} f=0$ corresponds to a homogeneous solution \tilde{f} to the equation $\square_{p, q} \tilde{f}=0$.

Note that $\Psi_{\alpha}^{(n)}$ is equal to $\Psi_{\alpha+n}$ up to a constant multiple. In fact, differentiating both sides of (3.13) n times, one obtains

$$
\begin{equation*}
u \Psi_{\alpha}^{(n+2)}(u)+(\alpha+n) \Psi_{\alpha}^{(n+1)}(u)+\Psi_{\alpha}^{(n)}(u)=0 . \tag{3.21}
\end{equation*}
$$

Since $\Psi_{\alpha+n}$ is a unique solution to (3.13) with α replaced by $\alpha+n$ that satisfies $\Psi_{\alpha+n}(0)=1$, it follows that $\Psi_{\alpha}^{(n)}=(-1)^{n} /(\alpha)_{n} \Psi_{\alpha+n}$. Thus, one obtains

$$
\begin{equation*}
\psi_{\alpha}^{(n)}=\frac{(-1)^{n}}{(\alpha)_{n}} \psi_{\alpha+n} \quad(n \in \mathbb{N}) . \tag{3.22}
\end{equation*}
$$

In what follows, we set $\rho_{x}:=r_{x}^{2} / 2$ and $\rho_{y}:=r_{y}^{2} / 2$ for economy of space. Then, it follows from (3.21) and (3.22) that

$$
\begin{equation*}
\rho_{x} \rho_{y} \psi_{\alpha+2}=\alpha(\alpha+1)\left(\psi_{\alpha+1}-\psi_{\alpha}\right) \tag{3.23}
\end{equation*}
$$

for $\alpha \in \mathbb{C} \backslash(-\mathbb{N})$. Furthermore, setting $\rho:=r^{2} / 2$, one can rewrite (3.9) as

$$
\begin{equation*}
\frac{1}{2} \Delta(h \varphi(\rho))=\left(d+\frac{n}{2}\right) h \varphi^{\prime}(\rho)+h \rho \varphi^{\prime \prime}(\rho), \tag{3.24}
\end{equation*}
$$

where h, Δ, r^{2} and φ are as in Lemma 3.1.
Proposition 3.3. For $f=h_{1} h_{2} \rho_{x}^{a} \rho_{y}^{b} \psi_{\alpha} \in \mathcal{E}$, one has

$$
\begin{align*}
H\left(h_{1} h_{2} \rho_{x}^{a} \rho_{y}^{b} \psi_{\alpha}\right) & =\left(-\kappa_{+}+\kappa_{-}-2 a+2 b\right) h_{1} h_{2} \rho_{x}^{a} \rho_{y}^{b} \psi_{\alpha}, \tag{3.25}\\
X^{+}\left(h_{1} h_{2} \rho_{x}^{a} \rho_{y}^{b} \psi_{\alpha}\right) & =h_{1} h_{2}\left(-a\left(\kappa_{+}+a-1\right) \rho_{x}^{a-1} \rho_{y}^{b} \psi_{\alpha}+\frac{\kappa_{+}+2 a-\alpha}{\alpha} \rho_{x}^{a} \rho_{y}^{b+1} \psi_{\alpha+1}\right), \tag{3.26}\\
X^{-}\left(h_{1} h_{2} \rho_{x}^{a} \rho_{y}^{b} \psi_{\alpha}\right) & =h_{1} h_{2}\left(b\left(\kappa_{-}+b-1\right) \rho_{x}^{a} \rho_{y}^{b-1} \psi_{\alpha}-\frac{\kappa_{-}+2 b-\alpha}{\alpha} \rho_{x}^{a+1} \rho_{y}^{b} \psi_{\alpha+1}\right) . \tag{3.27}
\end{align*}
$$

In particular, the \mathfrak{g}^{\prime}-action preserves the K-type of each element of \mathcal{E}.
Proof. It is immediate to show (3.25), and we will only show (3.26) here; the other case (3.27) can be shown similarly.

Setting $\varphi(u):=u^{a} \Psi_{\alpha}\left(\rho_{y} u\right)$, one sees

$$
\begin{aligned}
\varphi^{\prime}(u) & =a u^{a-1} \Psi_{\alpha}\left(\rho_{y} u\right)+u^{a} \rho_{y} \Psi_{\alpha}^{\prime}\left(\rho_{y} u\right) \\
\varphi^{\prime \prime}(u) & =a(a-1) u^{a-2} \Psi_{\alpha}\left(\rho_{y} u\right)+2 a u^{a-1} \rho_{y} \Psi_{\alpha}^{\prime}\left(\rho_{y} u\right)+u^{a} \rho_{y}^{2} \Psi_{\alpha}^{\prime \prime}\left(\rho_{y} u\right)
\end{aligned}
$$

Hence it follows from (3.24) that

$$
\begin{aligned}
\frac{1}{2} \Delta_{x}\left(h_{1} \rho_{x}^{a} \psi_{\alpha}\right) & =a\left(\kappa_{+}+a-1\right) h_{1} \rho_{x}^{a-1} \psi_{\alpha}+\left(\kappa_{+}+2 a\right) h_{1} \rho_{x}^{a} \rho_{y} \psi_{\alpha}^{\prime}+h_{1} \rho_{x}^{a+1} \rho_{y}^{2} \psi_{\alpha}^{\prime \prime} \\
& =h_{1}\left(a\left(\kappa_{+}+a-1\right) \rho_{x}^{a-1} \psi_{\alpha}+\left(\kappa_{+}+2 a-\alpha\right) \rho_{x}^{a} \rho_{y} \psi_{\alpha}^{\prime}-\rho_{x}^{a} \rho_{y} \psi_{\alpha}\right)
\end{aligned}
$$

since $\rho_{x} \rho_{y} \psi_{\alpha}^{\prime \prime}=-\alpha \psi_{\alpha}^{\prime}-\psi_{\alpha}$. Therefore, one obtains that

$$
\begin{aligned}
X^{+}\left(h_{1} h_{2} \rho_{x}^{a} \rho_{y}^{b} \psi_{\alpha}\right) & =-\frac{1}{2}\left(\Delta_{x}+2 \rho_{y}\right)\left(h_{1} h_{2} \rho_{x}^{a} \rho_{y}^{b} \psi_{\alpha}\right) \\
& =-a\left(\kappa_{+}+a-1\right) h_{1} h_{2} \rho_{x}^{a-1} \rho_{y}^{b} \psi_{\alpha}-\left(\kappa_{+}+2 a-\alpha\right) h_{1} h_{2} \rho_{x}^{a} \rho_{y}^{b+1} \psi_{\alpha}^{\prime}
\end{aligned}
$$

which, by (3.22), equals the right-hand side of (3.26). This completes the proof.

We conclude this section by calculating the action of \mathfrak{p} on \mathcal{E}, i.e. $\pi\left(X_{i, j}^{-}\right) f$ for $X_{i, j}^{-} \in \mathfrak{p}$ and $f \in \mathcal{E}$.

For a homogeneous polynomial $P=P\left(x_{1}, \ldots, x_{n}\right)$ on \mathbb{R}^{n} of degree d, set

$$
P^{\dagger}:=P-\frac{r^{2}}{4(d+n / 2-2)} \Delta P
$$

where $\Delta=\sum_{i=1}^{n} \partial_{x_{i}}^{2}$ and $r^{2}=\sum_{i=1}^{n} x_{i}^{2}$. Note that if $\Delta^{2} P=0$ then P^{\dagger} is harmonic by Lemma 3.1, and that if $h=h\left(x_{1}, \ldots, x_{n}\right)$ is harmonic then $\Delta\left(x_{i} h\right)=2 \partial_{x_{i}} h$ and $\Delta^{2}\left(x_{i} h\right)=0$.

Proposition 3.4. For $f=h_{1} h_{2} \rho_{x}^{a} \rho_{y}^{b} \psi_{\alpha} \in \mathcal{E}$, one has

$$
\begin{align*}
-\mathrm{i} & \pi\left(X_{i, j}^{-}\right)\left(h_{1} h_{2} \rho_{x}^{a} \rho_{y}^{b} \psi_{\alpha}\right) \\
= & \left(\partial_{x_{i}} h_{1}\right)\left(\partial_{y_{j}} h_{2}\right) \rho_{x}^{a} \rho_{y}^{b}\left(\frac{\left(\kappa_{+}+a-\alpha\right)\left(\kappa_{-}+b-\alpha\right)}{\left(\kappa_{+}-1\right)\left(\kappa_{-}-1\right)} \psi_{\alpha}+\frac{(\alpha-1)\left(\kappa_{+}+\kappa_{-}+a+b-\alpha-1\right)}{\left(\kappa_{+}-1\right)\left(\kappa_{-}-1\right)} \psi_{\alpha-1}\right) \\
& +\left(\partial_{x_{i}} h_{1}\right)\left(y_{j} h_{2}\right)^{\dagger}\left(-\frac{\kappa_{+}+a+b-\alpha}{\alpha\left(\kappa_{+}-1\right)} \rho_{x}^{a+1} \rho_{y}^{b} \psi_{\alpha+1}+\frac{b\left(\kappa_{+}+a-1\right)}{\kappa_{+}-1} \rho_{x}^{a} \rho_{y}^{b-1} \psi_{\alpha}\right) \tag{3.28}\\
& +\left(x_{i} h_{1}\right)^{\dagger}\left(\partial_{y_{j}} h_{2}\right)\left(-\frac{\kappa_{-}+a+b-\alpha}{\alpha\left(\kappa_{-}-1\right)} \rho_{x}^{a} \rho_{y}^{b+1} \psi_{\alpha+1}+\frac{a\left(\kappa_{-}+b-1\right)}{\kappa_{-}-1} \rho_{x}^{a-1} \rho_{y}^{b} \psi_{\alpha}\right) \\
& +\left(x_{i} h_{1}\right)^{\dagger}\left(y_{j} h_{2}\right)^{\dagger}\left(-\frac{a+b+1-\alpha}{\alpha} \rho_{x}^{a} \rho_{y}^{b} \psi_{\alpha+1}+a b \rho_{x}^{a-1} \rho_{y}^{b-1} \psi_{\alpha}\right),
\end{align*}
$$

where one regards $\partial_{x_{i}} h_{1} /\left(\kappa_{+}-1\right)\left(\right.$ resp. $\left.\partial_{y_{j}} h_{2} /\left(\kappa_{-}-1\right)\right)$ as zero when $\kappa_{+}=1\left(\right.$ resp. $\left.\kappa_{-}=1\right)$.
Proof. Since $\partial_{x_{i}} \psi_{\alpha}=\rho_{y} x_{i} \psi_{\alpha}^{\prime}$ and $\partial_{y_{j}} \psi_{\alpha}=\rho_{x} y_{j} \psi_{\alpha}^{\prime}$, one obtains

$$
\begin{align*}
-\mathrm{i} & \pi\left(X_{i, j}^{-}\right) f=\left(\partial_{x_{i}} \partial_{y_{j}}+x_{i} y_{j}\right)\left(h_{1} h_{2} \rho_{x}^{a} \rho_{y}^{b} \psi_{\alpha}\right) \\
& =\left(\partial_{x_{i}} h_{1}\right)\left(\partial_{y_{j}} h_{2}\right) \rho_{x}^{a} \rho_{y}^{b} \psi_{\alpha}+\left(x_{i} h_{1}\right)\left(\partial_{y_{j}} h_{2}\right)\left(a \rho_{x}^{a-1} \rho_{y}^{b} \psi_{\alpha}+\rho_{x}^{a} \rho_{y}^{b+1} \psi_{\alpha}^{\prime}\right) \\
& +\left(\partial_{x_{i}} h_{1}\right)\left(y_{j} h_{2}\right)\left(b \rho_{x}^{a} \rho_{y}^{b-1} \psi_{\alpha}+\rho_{x}^{a+1} \rho_{y}^{b} \psi_{\alpha}^{\prime}\right) \\
& +\left(x_{i} h_{1}\right)\left(y_{j} h_{2}\right)\left(\rho_{x}^{a} \rho_{y}^{b} \psi_{\alpha}+a b \rho_{x}^{a-1} \rho_{y}^{b-1} \psi_{\alpha}+(a+b+1) \rho_{x}^{a} \rho_{y}^{b} \psi_{\alpha}^{\prime}+\rho_{x}^{a+1} \rho_{y}^{b+1} \psi_{\alpha}^{\prime \prime}\right) . \tag{3.29}
\end{align*}
$$

Now, by definition, one has

$$
\begin{equation*}
x_{i} h_{1}=\left(x_{i} h_{1}\right)^{\dagger}+\frac{\rho_{x}}{\kappa_{+}-1} \partial_{x_{i}} h_{1} \quad \text { and } \quad y_{j} h_{2}=\left(y_{j} h_{2}\right)^{\dagger}+\frac{\rho_{y}}{\kappa_{-}-1} \partial_{y_{j}} h_{2} . \tag{3.30}
\end{equation*}
$$

Substituting (3.30) into (3.29), and using the relations (3.22) and (3.23), one sees that the coefficient of $\left(\partial_{x_{i}} h_{1}\right)\left(\partial_{y_{j}} h_{2}\right)$ in (3.29) equals the one of $\left(\partial_{x_{i}} h_{1}\right)\left(\partial_{y_{j}} h_{2}\right)$ in the right-hand side of (3.28). One can verify that each coefficient of $\left(\partial_{x_{i}} h_{1}\right)\left(y_{j} h_{2}\right)^{\dagger},\left(x_{i} h_{1}\right)^{\dagger}\left(\partial_{y_{j}} h_{2}\right)$ and $\left(x_{i} h_{1}\right)^{\dagger}\left(y_{j} h_{2}\right)^{\dagger}$ in (3.29) equals the one of the corresponding terms in (3.28) similarly. This completes the proof.

4. (\mathfrak{g}, K)-module associated with finite-dimensional $\mathfrak{s l}_{\mathbf{2}}$-module

If a nonzero $f \in \mathcal{E}$ satisfies $H f=\lambda f, X^{+} f=0$ and $\left(X^{-}\right)^{m+1} f=0$ (resp. $H f=\lambda f, X^{-} f=$ 0 and $\left(X^{+}\right)^{m+1} f=0$) for some $m \in \mathbb{N}$, then it follows from the representation theory of $\mathfrak{g}^{\prime}=\mathfrak{s l}_{2}$ that $\lambda=m$ (resp. $\lambda=-m$). Thus, we introduce (\mathfrak{g}, K)-modules associated with the finite-dimensional $\mathfrak{s l}_{2}$-module F_{m} of dimension $m+1$ as follows, which are the main objects of this paper.

Definition 4.1. Given $m \in \mathbb{N}$, we define (\mathfrak{g}, K)-modules $M^{ \pm}(m)$ by

$$
\begin{aligned}
M^{+}(m) & :=\left\{f \in \mathcal{E} \mid H f=m f, X^{+} f=0,\left(X^{-}\right)^{m+1} f=0\right\} \\
M^{-}(m) & :=\left\{f \in \mathcal{E} \mid H f=-m f, X^{-} f=0,\left(X^{+}\right)^{m+1} f=0\right\} .
\end{aligned}
$$

The modules $M^{ \pm}(m)$ were originally introduced in [12] without the condition of finite dimensionality. Note that $M^{+}(0)$ is identical to $M^{-}(0)$ by definition and that both $M^{ \pm}(m)$ should correspond to the $\mathfrak{s l}_{2}$-module F_{m} under the Howe duality (cf. [5]).

If $M^{+}(m) \neq\{0\}$ (resp. $\left.M^{-}(m) \neq\{0\}\right)$, then one sees that $p \equiv q \bmod 2$; for, if one takes a nonzero $f=h_{1} h_{2} \rho_{y}^{\mu_{-}} \psi_{\kappa_{+}} \in M^{+}(m)$ (resp. $f=h_{1} h_{2} \rho_{x}^{\mu_{+}} \psi_{\kappa_{-}} \in M^{-}(m)$) with $h_{1} \in$ $\mathcal{H}^{k}\left(\mathbb{R}^{p}\right), h_{2} \in \mathcal{H}^{l}\left(\mathbb{R}^{q}\right)$ and $\mu_{ \pm} \in \mathbb{N}$, then

$$
\begin{equation*}
\pm m=-\kappa_{+}+\kappa_{-} \pm 2 \mu_{\mp}=-k+l-\frac{p-q}{2} \pm 2 \mu_{\mp} \in \mathbb{Z} \tag{4.1}
\end{equation*}
$$

by (3.15) (resp. (3.17)). Hence one obtains $(p-q) / 2 \in \mathbb{Z}$. Therefore, we assume that $p \equiv q$ $\bmod 2$ in the rest of this paper.

Lemma 4.1. For $h_{1} \in \mathcal{H}^{k}\left(\mathbb{R}^{p}\right), h_{2} \in \mathcal{H}^{l}\left(\mathbb{R}^{q}\right)$ and $m \in \mathbb{N}$, let

$$
\begin{equation*}
v^{+}=h_{1} h_{2} \rho_{y}^{\mu_{-}} \psi_{\kappa_{+}} \in M^{+}(m) \quad \text { and } \quad v^{-}=h_{1} h_{2} \rho_{x}^{\mu_{+}} \psi_{\kappa_{-}} \in M^{-}(m), \tag{4.2}
\end{equation*}
$$

where $\mu_{+}, \mu_{-} \in \mathbb{N}$ such that $\mu_{+}+\mu_{-}=m$. Then the g^{\prime}-module generated by v^{+}coincides with the one generated by v^{-}:

$$
\left\langle v^{+}\right\rangle_{g^{\prime}}=\left\langle v^{-}\right\rangle_{g^{\prime}} .
$$

Proof. Both v^{+}and $\left(X^{+}\right)^{m} v^{-}\left(\right.$resp. v^{-}and $\left.\left(X^{-}\right)^{m} v^{+}\right)$are elements of $\mathcal{E} \subset \tilde{\mathcal{E}}$ that are highest (resp. lowest) weight vectors of weight m (resp. $-m$) under \mathfrak{g}^{\prime}-action. Namely, they are solutions in $\tilde{\mathcal{E}}$ to the differential equation

$$
H f= \pm m f \quad \text { and } \quad X^{ \pm} f=0
$$

As we mentioned in Proposition 3.2, they are respectively equal to each other up to a constant multiple. This completes the proof.

Proposition 4.1. For $m \in \mathbb{N}, M^{+}(m)$ and $M^{-}(m)$ are isomorphic to each other.
Proof. For $h_{1} \in \mathcal{H}^{k}\left(\mathbb{R}^{p}\right)$ and $h_{2} \in \mathcal{H}^{l}\left(\mathbb{R}^{q}\right)$, set

$$
v^{+}=h_{1} h_{2} \rho_{y}^{\mu_{-}} \psi_{\kappa_{+}} \in M^{+}(m) \quad \text { and } \quad v^{-}=h_{1} h_{2} \rho_{x}^{\mu_{+}} \psi_{\kappa_{-}} \in M^{-}(m) .
$$

with $\mu_{+}+\mu_{-}=m$ as in (4.2). Then, $\left(X^{+}\right)^{m} v^{-}$(resp. $\left(X^{-}\right)^{m} v^{+}$) is equal to v^{+}(resp. v^{-}) up to a constant multiple as we saw in Lemma 4.1, and thus, $\left(X^{+}\right)^{m}\left(X^{-}\right)^{m} v^{+}$is equal to v^{+}up to a constant multiple. In fact, $\left(X^{+}\right)^{m}\left(X^{-}\right)^{m} v^{+}=(m!)^{2} v^{+}$. Therefore,

$$
\left(X^{-}\right)^{m}: M^{+}(m) \longrightarrow M^{-}(m)
$$

provides an isomorphism of (\mathfrak{g}, K)-module. This completes the proof.
Now we prepare two lemmas to prove our main result. Note that Lemma 4.2 below is just a special case of Proposition 3.4. However, we state it separately to highlight the rôle of the relation (3.23).

Lemma 4.2. Let $h_{1} \in \mathcal{H}^{k}\left(\mathbb{R}^{p}\right)$ and $h_{2} \in \mathcal{H}^{l}\left(\mathbb{R}^{q}\right)$, and set $\kappa_{+}=k+p / 2$, $\kappa_{-}=l+q / 2$.
(1) For a highest weight vector $f=h_{1} h_{2} \rho_{y}^{\mu_{-}} \psi_{\kappa_{+}} \in \mathcal{E}, \pi\left(X_{i, j}^{-}\right) f$ is given by

$$
\begin{align*}
-\mathrm{i} \pi\left(X_{i, j}^{-}\right)\left(h_{1} h_{2} \rho_{y}^{\mu_{-}} \psi_{\kappa_{+}}\right)= & \frac{\kappa_{-}+\mu_{-}-1}{\kappa_{-}-1}\left(\partial_{x_{i}} h_{1}\right)\left(\partial_{y_{j}} h_{2}\right) \rho_{y}^{\mu_{-}} \psi_{\kappa_{+}-1} \\
& +\mu_{-}\left(\partial_{x_{i}} h_{1}\right)\left(y_{j} h_{2}\right)^{\dagger} \rho_{y}^{\mu_{-}-1} \psi_{\kappa_{+}-1} \\
& +\frac{\kappa_{+}-\kappa_{-}-\mu_{-}}{\kappa_{+}\left(\kappa_{-}-1\right)}\left(x_{i} h_{1}\right)^{\dagger}\left(\partial_{y_{j}} h_{2}\right) \rho_{y}^{\mu_{-}+1} \psi_{\kappa_{+}+1} \tag{4.3}\\
& +\frac{\kappa_{+}-\mu_{-}-1}{\kappa_{+}}\left(x_{i} h_{1}\right)^{\dagger}\left(y_{j} h_{2}\right)^{\dagger} \rho_{y}^{\mu_{-}} \psi_{\kappa_{+}+1}
\end{align*}
$$

(2) For a lowest weight vector $f=h_{1} h_{2} \rho_{x}^{\mu_{+}} \psi_{\kappa_{-}}, \pi\left(X_{i, j}^{-}\right) f$ is given by

$$
\begin{align*}
-\mathrm{i} \pi\left(X_{i, j}^{-}\right)\left(h_{1} h_{2} \rho_{x}^{\mu_{+}} \psi_{\kappa_{-}}\right)= & \frac{\kappa_{+}+\mu_{+}-1}{\kappa_{+}-1}\left(\partial_{x_{i}} h_{1}\right)\left(\partial_{y_{j}} h_{2}\right) \rho_{x}^{\mu_{+}} \psi_{\kappa_{-}-1} \\
& +\frac{\kappa_{-}-\kappa_{+}-\mu_{+}}{\kappa_{-}\left(\kappa_{+}-1\right)}\left(\partial_{x_{i}} h_{1}\right)\left(y_{j} h_{2}\right)^{\dagger} \rho_{x}^{\mu_{+}+1} \psi_{\kappa_{-}+1} \tag{4.4}\\
& +\mu_{+}\left(x_{i} h_{1}\right)^{\dagger}\left(\partial_{y_{j}} h_{2}\right) \rho_{x}^{\mu_{+}-1} \psi_{\kappa_{-}-1} \\
& +\frac{\kappa_{-}-\mu_{+}-1}{\kappa_{-}}\left(x_{i} h_{1}\right)^{\dagger}\left(y_{j} h_{2}\right)^{\dagger} \rho_{x}^{\mu_{+}} \psi_{\kappa_{-}+1} .
\end{align*}
$$

Proof. We only show (4.3) here. The other formula (4.4) can be shown similarly.
Set $a=0, b=\mu_{-}$and $\alpha=\kappa_{+}$in (3.28). Then, using the relation (3.23) with $\alpha=\kappa_{+}-1$, i.e.

$$
\rho_{x} \rho_{y} \psi_{\kappa_{+}+1}=\kappa_{+}\left(\kappa_{+}-1\right)\left(\psi_{\kappa_{+}}-\psi_{\kappa_{+}-1}\right),
$$

one sees that the coefficient of $\left(\partial_{x_{i}} h_{1}\right)\left(y_{j} h_{2}\right)^{\dagger}$ equals

$$
\begin{aligned}
& -\frac{\mu_{-}}{\kappa_{+}\left(\kappa_{+}-1\right)} \rho_{x} \rho_{y}^{\mu_{-}} \psi_{\kappa_{+}+1}+\mu_{-} \rho_{y}^{\mu_{-}-1} \psi_{\kappa_{+}} \\
= & \mu_{-} \rho_{y}^{\mu_{-}-1} \psi_{\kappa_{+}-1} .
\end{aligned}
$$

To show for the other coefficients is trivial and omitted.
Lemma 4.3. Let $h_{1} \in \mathcal{H}^{k}\left(\mathbb{R}^{p}\right)$ and $h_{2} \in \mathcal{H}^{l}\left(\mathbb{R}^{q}\right)$, and set $\kappa_{+}=k+p / 2$, $\kappa_{-}=l+q / 2$.
(1) For a highest weight vector $f=h_{1} h_{2} \rho_{y}^{\mu_{-}} \psi_{\kappa_{+}}$of weight $\lambda=-\kappa_{+}+\kappa_{-}+2 \mu_{-}$, one has

$$
\begin{equation*}
\left(X^{-}\right)^{v} f=h_{1} h_{2} \sum_{i=0}^{v}\binom{v}{i} \frac{(-\lambda+v-1)_{i}^{-}\left(\mu_{-}\right)_{v-i}^{-}\left(\kappa_{-}+\mu_{-}-1\right)_{v-i}^{-}}{\left(\kappa_{+}\right)_{i}} \rho_{x}^{i} \rho_{y}^{\mu_{-}-v+i} \psi_{\kappa_{+}+i} \tag{4.5}
\end{equation*}
$$

for $v=0,1,2, \ldots$.
(2) For a lowest weight vector $f=h_{1} h_{2} \rho_{x}^{\mu_{+}} \psi_{\kappa_{-}}$of weight $\lambda=-\kappa_{+}+\kappa_{-}-2 \mu_{+}$, one has

$$
\begin{equation*}
\left(X^{+}\right)^{v} f=(-1)^{v} h_{1} h_{2} \sum_{i=0}^{v}\binom{v}{i} \frac{(\lambda+v-1)_{i}^{-}\left(\mu_{+}\right)_{v-i}^{-}\left(\kappa_{+}+\mu_{+}-1\right)_{v-i}^{-}}{\left(\kappa_{-}\right)_{i}} \rho_{x}^{\mu_{+-}-v+i} \rho_{y}^{i} \psi_{\kappa_{-}+i} \tag{4.6}
\end{equation*}
$$

$$
\text { for } v=0,1,2, \ldots
$$

Proof. We only show (4.6) by induction on v here. The other case (4.5) can be shown similarly.

It is trivial if $v=0$, and it is nothing but Propostion 3.3 if $v=1$. Assume that it is true for $v \geqslant 1$, and apply X^{+}to the both sides of (4.6). Then, one sees that the right-hand side equals

$$
\begin{align*}
& (-1)^{v} h_{1} h_{2} \sum_{i=0}^{v}\binom{v}{i} \frac{(\lambda+v-1)_{i}^{-}\left(\mu_{+}\right)_{v-i}^{-}\left(\kappa_{+}+\mu_{+}-1\right)_{v-i}^{-}}{\left(\kappa_{-}\right)_{i}} \\
& \times\left(-\left(\mu_{+}-v+i\right)\left(\kappa_{+}+\mu_{+}-v+i-1\right) \rho_{x}^{\mu_{+}-v+i-1} \rho_{y}^{i} \psi_{\kappa_{-}+i}+\frac{-\lambda+i-2 v}{\kappa_{-}+i} \rho_{x}^{\mu_{+}-v+i} \rho_{y}^{i+1} \psi_{\kappa_{-}+i+1}\right) . \tag{4.7}
\end{align*}
$$

The coefficient of $(-1)^{v} h_{1} h_{2} \rho_{x}^{\mu_{+}-v+j-1} \rho_{y}^{j} \psi_{\kappa_{-}+j}$ in (4.7), $j=0,1, \ldots, v+1$, equals

$$
\begin{aligned}
&\binom{v}{j} \frac{(\lambda+v-1)_{j}^{-}\left(\mu_{+}\right)_{v-j}^{-}\left(\kappa_{+}+\mu_{+}-1\right)_{v-j}^{-}}{\left(\kappa_{-}\right)_{j}} \cdot(-1)\left(\mu_{+}-v+j\right)\left(\kappa_{+}+\mu_{+}-v+j-1\right) \\
&+\binom{v}{j-1} \frac{(\lambda+v-1)_{j-1}^{-}\left(\mu_{+}\right)_{v-j+1}^{-}\left(\kappa_{+}+\mu_{+}-1\right)_{v-j+1}^{-}}{\left(\kappa_{-}\right)_{j-1}} \cdot \frac{-(\lambda+2 v-j+1)}{\kappa_{-}+j-1} \\
&=-\left\{\binom{v}{j}(\lambda+v-j)+\binom{v}{v-1}(\lambda+2 v-j+1)\right\} \\
& \quad \times \frac{\left(\mu_{+}\right)_{v-j+1}^{-}\left(\kappa_{+}+\mu_{+}-1\right)_{v-j+1}^{-}(\lambda+v-1)_{j-1}^{-}}{\left(\kappa_{-}\right)_{j}} \\
&=-\binom{v+1}{j} \frac{(\lambda+v)_{j}^{-}\left(\mu_{+}\right)_{v-j+1}^{-}\left(\kappa_{+}+\mu_{+}-1\right)_{v-j+1}^{-}}{\left(\kappa_{-}\right)_{j}} .
\end{aligned}
$$

This completes the proof.
The following is our main result.

Theorem 4.1. Assume that $p \geqslant 1, q \geqslant 1$ and $p+q \in 2 \mathbb{N}$. Let $m \in \mathbb{N}$ be a nonnegative integer satisfying $m+3 \leqslant(p+q) / 2$. Then one has the following.

The K-type formula of $M^{ \pm}(m)$ is given by

$$
\begin{equation*}
\left.M^{ \pm}(m)\right|_{K} \simeq \bigoplus_{\substack{k, l>0 \\ k-l+\frac{p-q}{2} \in \Lambda_{m}}} \mathcal{H}^{k}\left(\mathbb{R}^{p}\right) \otimes \mathcal{H}^{l}\left(\mathbb{R}^{q}\right) \tag{4.8}
\end{equation*}
$$

where $\Lambda_{m}=\{-m,-m+2,-m+4, \ldots, m-2, m\}$, the set of H-weights of F_{m};
(2) Suppose further that $p, q \geqslant 2$. Then $M^{ \pm}(m)$ are irreducible (\mathfrak{g}, K)-modules.

Proof. It suffices to show the theorem for $M^{+}(m)$. Let $f=h_{1} h_{2} \rho_{y}^{\mu_{-}} \psi_{\kappa_{+}} \neq 0$ be an element of $M^{+}(m)$, where $h_{1} \in \mathcal{H}^{k}\left(\mathbb{R}^{p}\right), h_{2} \in \mathcal{H}^{l}\left(\mathbb{R}^{q}\right)$. Then by Lemma 4.3, one obtains

$$
\begin{aligned}
\left(X^{-}\right)^{m+1} f & =h_{1} h_{2} \sum_{i=0}^{m+1}\binom{m+1}{i} \frac{(0)_{i}^{-}\left(\mu_{-}\right)_{m+1-i}^{-}\left(\kappa_{-}+\mu_{-}-1\right)_{m+1-i}^{-}}{\left(\kappa_{+}\right)_{i}} \rho_{x}^{i} \rho_{y}^{\mu_{-}-m-1+i} \psi_{\kappa_{+}+i} \\
& =\left(\mu_{-}\right)_{m+1}^{-}\left(\kappa_{-}+\mu_{-}-1\right)_{m+1}^{-} h_{1} h_{2} \rho_{y}^{\mu_{-}-m-1} \psi_{\kappa_{+}} .
\end{aligned}
$$

Thus, $\left(X^{-}\right)^{m+1} f=0$ implies that $\left(\mu_{-}\right)_{m+1}^{-}=0$ or $\left(\kappa_{-}+\mu_{-}-1\right)_{m+1}^{-}=0$. Namely,

$$
\begin{align*}
& \mu_{-}=0,1, \ldots, m, \quad \text { or } \tag{4.9}\\
& \mu_{-}=-\kappa_{-}+1,-\kappa_{-}+2, \ldots,-\kappa_{-}+m+1 . \tag{4.10}
\end{align*}
$$

The assumption that $m+3 \leqslant(p+q) / 2$, however, implies that (4.10) is impossible; if it holded true, then by (4.1), one would obtain

$$
-m+2 \leqslant \kappa_{+}+\kappa_{-} \leqslant m+2,
$$

which contradicts $\kappa_{+}+\kappa_{-} \geqslant(p+q) / 2 \geqslant m+3$. Therefore, it follows from (4.9) that

$$
k-l+\frac{p-q}{2}=\kappa_{+}-\kappa_{-}=-m+2 \mu_{-} \in \Lambda_{m},
$$

which proves (1).
Let us consider a closed subset $D_{m} \subset \mathbb{R}^{2}$ (with respect to the Euclidean topology of \mathbb{R}^{2}) given by

$$
\begin{equation*}
D_{m}=\left\{\left(t_{1}, t_{2}\right) \in \mathbb{R}^{2}\left|t_{1} \geqslant p / 2, t_{2} \geqslant q / 2,\left|t_{1}-t_{2}\right| \leqslant m\right\},\right. \tag{4.11}
\end{equation*}
$$

and the set of integral points of D_{m} given by

$$
\Sigma_{m}=\left\{\begin{array}{l|l}
\left(t_{1}, t_{2}\right) \in D_{m} & \begin{array}{l}
t_{1}-p / 2 \in \mathbb{N}, t_{2}-q / 2 \in \mathbb{N}, \\
t_{1}-t_{2} \in \Lambda_{m}
\end{array} \tag{4.12}
\end{array}\right\}
$$

Note that the sum in the right-hand side of (4.8) can be written as the one with $\left(\kappa_{+}, \kappa_{-}\right)$ running over the set Σ_{m}.

Now, applying (4.3) to $f=h_{1} h_{2} \rho_{y}^{\mu_{-}} \psi_{\kappa_{+}} \in M^{+}(m)$, we denote the coefficient of

$$
\left(\partial_{x_{i}} h_{1}\right)\left(\partial_{y_{j}} h_{2}\right), \quad\left(x_{i} h_{1}\right)^{\dagger}\left(\partial_{y_{j}} h_{2}\right), \quad\left(\partial_{x_{i}} h_{1}\right)\left(y_{j} h_{2}\right)^{\dagger} \quad \text { and } \quad\left(x_{i} h_{1}\right)^{\dagger}\left(y_{j} h_{2}\right)^{\dagger}
$$

in the right-hand side of (4.3) by C_{--}, C_{+-}, C_{-+}and C_{++}respectively, where $\mu_{-}=0,1, \ldots, m$. Namely,

$$
\begin{array}{ll}
C_{--}=\frac{\kappa_{-}+\mu_{-}-1}{\kappa_{-}-1} \rho_{y}^{\mu_{-}} \psi_{\kappa_{+}-1}, & C_{-+}=\mu_{-} \rho_{y}^{\mu_{-}-1} \psi_{\kappa_{+}-1} \\
C_{+-}=\frac{\kappa_{+}-\mu_{-}-\kappa_{-}}{\kappa_{+}\left(\kappa_{-}-1\right)} \rho_{y}^{\mu_{-}+1} \psi_{\kappa_{+}+1}, & C_{++}=\frac{\kappa_{+}-\mu_{--}-1}{\kappa_{+}} \rho_{y}^{\mu_{-}} \psi_{\kappa_{+}+1}
\end{array}
$$

(i) First, let us consider the case where $\left(\kappa_{+}, \kappa_{-}\right) \in \Sigma_{m}$ is an interior point of D_{m}. Note then that κ_{+}and κ_{-}are >1 by the assumption that $p, q \geqslant 2$. Then, one obtains $\mu_{-}=1,2, \ldots, m-1$ by (4.9). In particular, $C_{-+} \neq 0$. Now, $C_{--}=0$ would imply $\mu_{-}=-\kappa_{-}+1$, which contradicts $m+3 \leqslant(p+q) / 2$ as we saw above. It also follows from (4.1) that $\kappa_{-}-\kappa_{+}+\mu_{-}=m-\mu_{-}$, and $C_{+-} \neq 0$. Finally, $C_{++}=0$ would imply that $\kappa_{+}+\kappa_{-}=m+2$, which is absurd. Thus, all the coefficients in (4.3) never vanish.
(ii) Next, let us consider the case where $\left(\kappa_{+}, \kappa_{-}\right) \in \Sigma_{m}$ is in the boundary of D_{m}. Then there are three sub-cases:
(ii-a) $\mu_{-}=0$,
(ii-b) $\mu_{-}=m$,
(ii-c) $0<\mu_{-}<m$ and $k=0$ or $l=0$.
In Case (ii-a), $C_{-+}=0$, and, C_{--}, C_{+-}and C_{++}are nonzero by the same reason as Case (i). In Case (ii-b), $C_{+-}=0$ since $\kappa_{+}-\kappa_{-}=m$, and all the other coefficients are nonzero. In Case (ii-c), all the coefficients are nonzero, but $\partial_{x_{i}} h_{1}=0$ or $\partial_{y_{j}} h_{2}=0$.

Therefore, by applying $\pi(X), X \in \mathfrak{p}$, one can move from any K-type in $M^{+}(m)$ to any other K-type in $M^{+}(m)$, while $\pi(X), X \in \mathfrak{f}$, preserves the K-type of each element of $M^{+}(m)$. This completes the proof of (2), and of the theorem.

Example 4.1. Figure 1 below illustrates D_{m} in (4.11) and Σ_{m} in (4.12) in the case where $p=14, q=12$ and $m=4$. The colored area and the dots sitting in the area indicates D_{m} and Σ_{m} respectively. Each K-type of $M^{ \pm}(m)$ corresponds to a dot by the correspondence

$$
\mathcal{H}^{k}\left(\mathbb{R}^{p}\right) \otimes \mathcal{H}^{l}\left(\mathbb{R}^{q}\right) \longleftrightarrow(k+p / 2, l+q / 2)
$$

Let us apply $\pi\left(X_{i, j}^{-}\right)$to an element f of $M^{ \pm}(m)$. Then, if the K-type of f corresponds to a white dot \circ in Fig. 1, one can move to any adjacent dots in the north-east, north-west, south-east, and south-west direction; if it corresponds to a black dot • in Fig. 1, one can move only to adjacent dots in the interior or in the boundary of D_{m}.

Now, let us briefly recall the definitions of the Gelfand-Kirillov dimension and the Bernstein degree of a finitely generated $U(\mathfrak{g})$-module M, where $U(\mathfrak{g})$ denotes the universal enveloping algebra of \mathfrak{g}. Namely, we choose a finite-dimensional subspace M_{0} so that $M=U(\mathfrak{g}) M_{0}$, and for each nonnegative integer n, we set $M_{n}:=U_{n}(\mathfrak{g}) M_{0}$, with $U_{n}(\mathfrak{g})$ denoting the subspace of $U(\mathfrak{g})$ spanned by products of at most n elements of \mathfrak{g}. Then there exists a polynomial $\psi_{M}(t) \in \mathbb{Q}[t]$ of degree $d-1$ such that

$$
\psi_{M}(n)=\operatorname{dim}\left(M_{n} / M_{n-1}\right) \quad \text { for all sufficiently large } n
$$

Fig. 1. Applying $\pi\left(X_{i, j}^{-}\right)$, one can move from \circ to dots in NE, NW, SE and SW directions, while from -, only to dots in the interior or in the boundary.

Moreover, the leading term of ψ_{M} is of the form

$$
\frac{m}{(d-1)!} t^{d-1}
$$

for a positive integer m. We call d the Gelfand-Kirillov dimension of M, and m its Bernstein degree, which we denote by $\operatorname{Dim} M$ and $\operatorname{Deg} M$ respectively (see [13] for more details).

Corollary 4.1. If $p, q \geqslant 2, p+q \in 2 \mathbb{N}$ and $m+3 \leqslant(p+q) / 2$, then the Gelfand-Kirillov dimension and the Bernstein degree of $M^{ \pm}(m)$ are given by

$$
\begin{align*}
& \operatorname{Dim} M^{ \pm}(m)=p+q-3 \tag{4.13}\\
& \operatorname{Deg} M^{ \pm}(m)=\frac{4(m+1)(p+q-4)!}{(p-2)!(q-2)!} \tag{4.14}
\end{align*}
$$

respectively.
Proof. Without loss of generality, one can assume that $p \geqslant q$. We will consider $M^{+}(m)$ here. Then, let $\ell(j)$ be a line in \mathbb{R}^{2} given by

$$
\ell(j)=\left\{\left(t_{1}, t_{2}\right) \in \mathbb{R}^{2} \mid t_{1}+t_{2}=j\right\}
$$

with $j \in \mathbb{N}$, and set

$$
\begin{equation*}
c:=\min \left\{j \in \mathbb{N} \mid \sharp\left(\ell(j) \cap \Sigma_{m}\right)=m+1\right\} . \tag{4.15}
\end{equation*}
$$

As a generating (K-invariant) subspace of $M^{+}(m)$, we take

$$
\begin{equation*}
M_{0}:=\bigoplus_{\substack{\left(\kappa_{+}, \kappa_{-}\right) \in \Sigma_{m} \\ K_{+}+\kappa_{-} \leqslant c}} \mathcal{H}^{k}\left(\mathbb{R}^{p}\right) \otimes \mathcal{H}^{l}\left(\mathbb{R}^{q}\right) \rho_{y}^{\mu_{-}} \psi_{\kappa_{+}} \tag{4.16}
\end{equation*}
$$

where, in each summand, μ_{-}is determined by $\mu_{-}=(1 / 2)\left(\kappa_{+}-\kappa_{-}+m\right)$. If one sets $\mathrm{M}_{n}:=U_{n}(\mathrm{~g}) \mathrm{M}_{0}\left(\mathrm{M}_{-1}:=0\right)$, then it follows from (4.8) and (3.5) that

$$
\begin{align*}
& \operatorname{dim}\left(\mathrm{M}_{n} / \mathrm{M}_{n-1}\right) \\
&= \sum_{j=0}^{m} \operatorname{dim}\left(\mathcal{H}^{n+j}\left(\mathbb{R}^{p}\right) \otimes \mathcal{H}^{n+m-j+\frac{p-q}{2}}\left(\mathbb{R}^{q}\right)\right) \\
&= 4 \sum_{j=0}^{m} \frac{n+j+\frac{p}{2}-1}{(p-2)!}(n+j+1)(n+j+2) \cdots(n+j+p-3) \\
& \quad \times \frac{n+m-j+\frac{p-q}{2}+\frac{q}{2}-1}{(q-2)!}\left(n+m-j+\frac{p-q}{2}+1\right)\left(n+m-j+\frac{p-q}{2}+2\right) \\
& \cdots\left(n+m-j+\frac{p-q}{2}+q-3\right) \\
&= \frac{4(m+1)}{(p-2)!(q-2)!} n^{p+q-4}+(\text { lower order terms in } n) \tag{4.17}
\end{align*}
$$

for all $n \in \mathbb{N}$, which implies (4.13). Furthermore, since the leading term of (4.17) can be rewritten as

$$
\frac{4(m+1)}{(p-2)!(q-2)!} n^{p+q-4}=\frac{4(m+1)(p+q-4)!}{(p-2)!(q-2)!} \frac{n^{p+q-4}}{(p+q-4)!},
$$

one obtains (4.14). This completes the proof.
Remark 4.1. One can show that the nonnegative integer c in (4.15) is in fact equal to $\max \{m+p, m+q\}$.

It is well known that the Gelfand-Kirillov dimension of the minimal representation of $\mathrm{O}(p, q)$ is equal to $p+q-3\left(\mathrm{cf}\right.$. [8-10, 16]). The K-type formula (4.8) of $M^{+}(0)=M^{-}(0)$ in Theorem 4.1 shows that it corresponds to the (\mathfrak{g}, K)-module of the minimal representation of $\mathrm{O}(p, q)$. However, as we have seen in Corollary 4.1, the Gelfand-Kirillov dimension of $M^{ \pm}(m)$ is equal to $p+q-3$ for any $m \in \mathbb{N}$ satisfying $m+3 \leqslant(p+q) / 2$. The Bernstein degree distinguishes the minimal representation from the others.

Acknowledgments

This work was partially supported by JSPS KAKENHI Grant-in-Aid for Scientific Research(C) Number JP26400014.

References

[1] B. Binegar and R. Zierau, Unitarization of a singular representation of $\mathrm{SO}(p, q)$, Comm. Math. Phys. 138 (1991), no. 2, 245-258.
[2] N. Chriss and V. Ginzburg, Representation theory and complex geometry, Birkhäuser Boston, Inc., Boston, MA, 1997.
[3] T. Hashimoto, The moment map on symplectic vector space and oscillator representation, Kyoto J. Math. 57 (2017), no. 3, 553-583.
[4] R. Howe, On some results of Strichartz and of Rallis and Schiffiman, J. Funct. Anal. 32 (1979), no. 3, 297-303.
[5] , Remarks on classical invariant theory, Trans. Amer. Math. Soc. 313 (1989), no. 2, 539-570.
[6] R. Howe and E.-C. Tan, Homogeneous functions on light cones: the infinitesimal structure of some degenerate principal series representations, Bull. Amer. Math. Soc. (N.S.) 28 (1993), no. 1, 1-74.
[7] T. Kobayashi and G. Mano, The Schrödinger model for the minimal representation of the indefinite orthogonal group $O(p, q)$, Memoirs of the American Mathematical Society, American Mathematical Society, 2011.
[8] T. Kobayashi and B. Ørsted, Analysis on the minimal representation of $\mathrm{O}(p, q)$. I., Adv. Math. 180 (2003), no. 2, 486-512.
[9] T. Kobayashi and B. Ørsted, Analysis on the minimal representation of $\mathrm{O}(p, q)$. II., Adv. Math. 180 (2003), no. 2, 513-550.
[10] T. Kobayashi and B. Ørsted, Analysis on the minimal representation of $\mathrm{O}(p, q)$. III., Adv. Math. 180 (2003), no. 2, 551-595.
[11] B. Kostant, The vanishing of scalar curvature and the minimal representation of $\mathrm{SO}(4,4)$, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989), Progr. Math., vol. 92, Birkhäuser Boston, Boston, MA, 1990, pp. 85-124.
[12] S. Rallis and G. Schiffmann, Weil representation. I. Intertwining distributions and discrete spectrum, Mem. Amer. Math. Soc. 25 (1980), no. 231, iii+203.
[13] D. Vogan, Jr., Gel'fand-Kirillov dimension for Harish-Chandra modules, Invent. Math. 48 (1978), no. 1, 75-98.
[14] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge Univ. Press, Cambridge, 1927.
[15] N. M. J. Woodhouse, Geometric quantization, second ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1992, Oxford Science Publications.
[16] C.-B. Zhu and J.-S. Huang, On certain small representations of indefinite orthogonal groups, Represent. Theory 1 (1997), 190-206 (electronic).

[^0]: ${ }^{\text {a }}$ More precisely, one should denote $x={ }^{t}\left({ }^{t} x^{\prime},{ }^{t} x^{\prime \prime}\right)$ etc.; we will use this abbreviated notation in what follows.

