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1. Introduction

Let G be a Lie group with g0 its Lie algebra and g the complexification of g0. An action
of G on a symplectic manifold (M,ω) is called symplectic if g∗ω = ω for all g ∈ G,
and a symplectic action is called Hamiltonian if there exists a smooth G-equivariant map
µ : M → g∗0 satisfying the condition (2.3) below, which is called a moment map, where g∗0 is
the dual vector space of g0. We are concerned with the case where the symplectic manifold
is a real symplectic vector space (W,ω). It was shown in [3] that when G = Sp(n,R),U(p,q)
andO∗(2n), the canonical quantization of themomentmap onW = R2n, (Cp+q)R and (C2n)R,
with a choice of a Lagrangian subspace in each case, yields a representation of g that is
the differentiation of the oscillator (or Segal-Shale-Weil) representation of Mp(n,R),U(p,q)
and O∗(2n) respectively, where Mp(n,R) is the metaplectic group, i.e., the double cover of
Sp(n,R).

In this paper, we consider the case whereW = (Cp+q)R, the real vector space underlying
Cp+q:

W =
{
z = x + i y

�� x, y ∈ Rp+q
}
,

which we regard as a symplectic vector space equipped with a symplectic form ω given by

ω(z,w) = Im(z∗Ip,qw) (z,w ∈ W),

1
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and G = O(p,q), the indefinite orthogonal group defined by

O(p,q) =
{
g ∈ GLp+q(R)

�� tgIp,qg = Ip,q
}

with Ip,q =
[

1p

−1q

]
. The action of G = O(p,q) on W defined by matrix multiplication

is symplectic and Hamiltonian. The O(p,q)-case we consider here is closely related to the
U(p,q)-case mentioned above. In fact, the symplectic vector space (W,ω) for O(p,q) is
identical to the one for U(p,q), and the action of O(p,q) on W is the restriction of the action
of U(p,q) induced from the canonical embedding of O(p,q) into U(p,q). Furthermore, the
moment map for the O(p,q)-case is the real part of the one for the U(p,q)-case.

The canonical quantization of the moment map µ : W = (Cp+q)R → g∗0 for G = O(p,q),
with a choice of aLagrangian subspaceV ofW , provides a representation π ofg as in the cases
mentioned above, which is shown to be a partial Fourier transformation of the representation
π] of g obtained by differentiating the left regular representation of G on C∞(V). Note that
if we restrict the operator π](X), X ∈ g, to a subspace consisting of homogeneous functions
on V with respect to the multiplicative group R>0, then the restricted representation is the
degenerate principal series of G obtained by inducing up a one-dimensional representation
of a parabolic subgroup of G (see [6]).

In the influential paper [5], Howe showed that one can treat the classical invariant
theory from a unified viewpoint — the dual pair. In this paper, we focus our attention on
the dual pair (O(p,q),SL2(R)), both components of which are noncompact, and apply the
representation theory of sl2 to cut out (g,K)-modules, which we denote by M+(m) and
M−(m), m = 0,1,2, . . . , where M+(m) (resp. M−(m)) consists of all highest (resp. lowest)
weight vectors with respect to the sl2-action (see Definition 4.1 below for details). Note
that M+(0) = M−(0) by definition. We will see that such weight vectors are given in terms
of harmonic polynomials and the Bessel functions of the first kind. Both M±(m) should
correspond to the (m + 1)-dimensional irreducible representation of sl2 under the Howe
duality, and in fact are isomorphic to each other. They were originally considered in [12]
without the condition of finite-dimensionality.

In the cases of the oscillator representations mentioned above, i.e., when G = Sp(n,R),
U(p,q) and O∗(2n), we note that the counterpart G′ of G for the dual pair (G,G′) is
compact, hence, all its irreducible representations are finite-dimensional. Furthermore, the
oscillator representations give examples of the minimal representations (we refer to [7] and
the references therein for the definition of the minimal representation). When G = O(p,q),
its minimal representation is discussed e.g. in [1, 7–11,16].

The main result of this paper is the K-type formula of M±(m) for nonnegative integers
m satisfying

m + 3 6
p + q

2
(1.1)

when p + q is even, from which one can show that M±(m) are irreducible (g,K)-modules
if p,q > 2 (Theorem 4.1). The fact that the elements of M±(m) are described in terms of
the Bessel function plays a role in the proof of our main result. The K-type formula of
M+(0) = M−(0), which is associated with the one-dimensional trivial representation of sl2,
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shows that it corresponds to the (g,K)-module of the minimal representation of O(p,q). We
will see that the Gelfand-Kirillov dimension and the Bernstein degree of the irreducible
M±(m), which we denote by Dim M±(m) and Deg M±(m) respectively, are given by

Dim M±(m) = p + q − 3,

Deg M±(m) =
4(m + 1)(p + q − 4)!
(p − 2)!(q − 2)!

(Corollary 4.1).
The rest of this paper is organized as follows. In §2, we calculate the moment map µ

on W for G = O(p,q), and construct the representation π of g via canonical quantization of
µ. Then we show that π is a partial Fourier transform of the differential representation of
the left regular representation of G on C∞(V). In §3, we give an sl2-action that commutes
with π, and find both highest weight vectors and lowest weight vectors with respect to the
sl2-action. We remark that such weight vectors are given in terms of the Bessel functions of
the first kind. In §4, we introduce (g,K)-modules M±(m) and prove that M+(m) and M−(m)
are isomorphic to each other for any nonnegative integer m. When p+ q is even, we find the
K-type formula of M±(m) for m satisfying (1.1) and show that they are irreducible if p,q
are > 2. As a corollary, we obtain the Gelfand-Kirillov dimension and the Bernstein degree
of M±(m).

Notation

Let N denote the set of nonnegative integers {0,1,2, . . . }, and [p] the set {1,2, . . . , p} for
a positive integer p. We write ı̄ := p + i for i ∈ [q] for the sake of simplicity. Finally, for
α ∈ C and n ∈ N, we denote the rising and the falling factorials by

(α)n :=
n∏
i=1
(α + i − 1) and (α)−n :=

n∏
i=1
(α − i + 1),

respectively.

2. Moment Map and its Quantization

Let G be the indefinite orthogonal group O(p,q), which we realize by

O(p,q) =
{
g ∈ GLp+q(R)

�� tgIp,qg = Ip,q
}

with Ip,q =
[

1p

−1q

]
. Let K be a maximal compact subgroup of G given by

K =
{ [

a 0
0 d

]
∈ G

���� a ∈ O(p), d ∈ O(q)
}
' O(p) × O(q).

We denote the Lie algebra of K and its complexification by k0 and k respectively.
Let {X±i, j} be a basis for g0 = o(p,q) given by

X+i, j = Ei, j − Ej ,i (i, j ∈ [p])

X+ı̄, ̄ = Eı̄, ̄ − E ̄,ı̄ (i, j ∈ [q])

X−i, j = Ei, ̄ + E ̄,i (i ∈ [p], j ∈ [q]),

(2.1)
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which also forms a basis for g = op+q , the complexification of g0 = o(p,q). We often identify
g∗ with g via the invariant bilinear form B given by

B(X,Y ) =
1
2

tr (XY ) (X,Y ∈ g),

where g∗ denotes the dual space of g. Finally, let g = k ⊕ p be the complexified Cartan
decomposition of g with

k =
∑

i, j∈[p]

CX+i, j ⊕
∑

i, j∈[q]

CX+ı̄, ̄, p =
∑

i∈[p], j∈[q]

CX−i, j .

Let W be the real vector space (Cp+q)R underlying the complex vector space Cp+q:

W =
{
z = x + i y

�� x = t(x1, . . . , xp+q), y = t(y1, . . . , yp+q) ∈ R
p+q

}
,

which is equipped with a symplectic form ω given by

ω(z,w) = Im(z∗Ip,qw) (z,w ∈ W) (2.2)

Then G acts on (W,ω) symplectically via z 7→ gz (matrix multiplication) for z ∈ W and
g ∈ G. Furthermore, the action of G on (W,ω) is Hamiltonian, i.e., there exists a moment
map µ : W → g∗0, whose definition we briefly recall: if, in general, a Lie group G acts on a
symplectic manifold (M,ω) symplectically, a smooth G-equivariant map µ : M → g∗0 that
satisfies

d〈µ,X〉 = ι(XM )ω for all X ∈ g0, (2.3)

is called a moment map, where ι stands for the contraction and XM denotes the vector field
on M given by

XM (p) =
d
dt

����
t=0

exp(−tX).p (p ∈ M).

Under the identification that ei := t(0, . . . ,
i
1, . . . ,0) ↔ ∂xi and i ei ↔ ∂yi for i =

1,2, . . . , p + q, the symplectic form ω given in (2.2) can be rewritten as

ω =

p+q∑
i=1

εi dxi ∧ dyi

with εi = 1 for i ∈ [p] and εp+i = −1 for i ∈ [q].

Proposition 2.1. The action of G = O(p,q) on (W,ω) is Hamiltonian, and the moment map
µ : W → g∗0 ' g0 is given by

µ(z) = −
i
2

(
zz∗ − t(zz∗)

)
Ip,q

= (−x ty + y tx)Ip,q

=

[
−x ′ ty′ + y′ tx ′ x ′ ty′′ − y′ tx ′′

−x ′′ ty′ + y′′ tx ′ x ′′ ty′′ − y′′ tx ′′

] (2.4)
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for z = x + i y ∈ W with x = t(x ′, x ′′), y = t(y′, y′′) ∈ Rp+q and x ′, y′ ∈ Rp, x ′′, y′′ ∈ Rq a.

Proof. Using the formula

〈µ(z),X〉 =
1
2
ω(z,Xz)

(see e.g. [2, Proposition 1.4.6]), which, in our case, can be written as

B(µ(z),X) =
1
2

B
(
(zz∗ − z̄ tz)Ip,q,X

)
for all X ∈ g0, we obtain (2.4) immediately.

Remark 2.1. Recall that the moment map µU : W → u(p,q)∗ ' u(p,q) for the action of
U(p,q) on our symplectic vector space (W,ω) is given by

µU(z) = −i zz∗Ip,q (z = x + i y ∈ W)

where we identify u(p,q)∗ with u(p,q) via the invariant bilinear form B given by B(X,Y ) =
(1/2) tr (XY ). Therefore, the moment map µ in the proposition is related to µU by

µ(z) =
µU(z) + µU(z)

2
.

Namely, one has µ = Re µU.

We define a Poisson bracket by

{ f ,g} = ω(ξg, ξf ),

where ξf denotes the Hamiltonian vector field on W corresponding to f ∈ C∞(W), i.e. the
vector field that satisfies ι(ξf )ω = d f . Then the Poisson bracket among the coordinate
functions are given by

{xi, yj} = −δi, jεi, {xi, xj} = {yi, yj} = 0

for i, j = 1,2, . . . , p + q. Dirac’s quantization conditions requires that

{ f1, f2} = f3 implies [ f̂1, f̂2] = −i ~ f̂3

for fi ∈ C∞(W) (see e.g. [15]). Thus, we quantize the coordinate functions as follows:

x̂i = xi, ŷi = −i ~∂xi , (i = 1, . . . , p),
x̂ ̄ = −i ~∂y ̄ , ŷ ̄ = y ̄, ( j = 1, . . . ,q),

(2.5)

where ∂xi and ∂y ̄ denote ∂/∂xi and ∂/∂y ̄ respectively. In what follows, we set ~ = 1 for
brevity.

The quantization (2.5) corresponds to a Lagrangian subspace V of W given by

V = 〈e1, . . . , ep, i e1̄, . . . , i eq̄〉R (2.6)

aMore precisely, one should denote x = t( tx′, tx′′) etc.; we will use this abbreviated notation in what follows.
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in the sense that the quantized operators are realized in PD(V), the ring of polynomial
coefficient differential operators on V . Therefore, the quantized moment map µ̂ is given by

µ̂ = (−x̂ tŷ + ŷ tx̂)Ip,q =
[
i (x ′ t∂x′ − ∂x′ tx ′) x ′ ty′′ + ∂x′ t∂y′′
∂y′′

t∂x′ + y′′ tx ′ i (y′′ t∂y′′ − ∂y′′ ty′′)

]
,

where
x̂ = t(x̂1, . . . , x̂p+q) = t(x ′,−i ∂y′′),
ŷ = t(ŷ1, . . . , ŷp+q) =

t(−i ∂x′, y′′),

and
x ′ = t(x1, . . . , xp), ∂x′ =

t(∂x1, . . . , ∂xp ),

y′′ = t(y1̄, . . . , yq̄), ∂y′′ =
t(∂y1̄, . . . , ∂yq̄ ).

Note that x1, . . . , xp, y1̄, . . . , yq̄ are considered to be the coordinate functions on V with
respect to the basis e1, . . . , ep, i e1̄, . . . , i eq̄ .

Theorem 2.1. For X ∈ g, set π(X) := i 〈µ̂,X〉. Then π : g → PD(V) is a Lie algebra
homomorphism. In terms of the basis (2.1), it is given by

π(X) =


−xj∂xi + xi∂x j if X = X+i, j ;
−y ̄∂yı̄ + yı̄∂y ̄ if X = X+ı̄, ̄;
i (xiy ̄ + ∂xi ∂y ̄ ) if X = X−i, j .

(2.7)

Proof. This is proved in the same manner as [3, Theorem 2.3] (or, one can verify the
commutation relations by direct calculation).

There is another canonical quantization that corresponds to the same Lagrangian sub-
space V of W as given in (2.6). Namely, if we quantize the coordinate functions as

x̂i = xi, ŷi = −i ∂xi , (i = 1, . . . , p),
x̂ ̄ = y ̄, ŷ ̄ = i ∂y ̄ , ( j = 1, . . . ,q),

(2.8)

then the quantized moment map, which we denote by µ̂], is given by

µ̂] = (−x̂ tŷ + ŷ tx̂)Ip,q = i
[

x ′ t∂x′ − ∂x′ tx ′ x ′ t∂y′′ + ∂x′ ty′′

y′′ t∂x′ + ∂y′′
tx ′ y′′ t∂y′′ − ∂y′′ ty′′

]
,

where
x̂ = t(x̂1, . . . , x̂p+q) = t(x ′, y′′),

ŷ = t(ŷ1, . . . , ŷp+q) =
t(−i ∂x′, i ∂y′′).

Hence one obtains a representation π] : g → PD(V) if one sets π](X) := i 〈µ̂],X〉 for
X ∈ g. It is given in terms of the basis (2.1) by

π](X) =


−xj∂xi + xi∂x j if X = X+i, j ;
−y ̄∂yı̄ + yı̄∂y ̄ if X = X+ı̄, ̄;
−(xi∂y ̄ + y ̄∂xi ) if X = X−i, j .

(2.9)



December 15, 2020 13:0 WSPC/INSTRUCTION FILE minimal_rep314_ws-ijm

(g, K)-module of O(p, q) 7

Remark 2.2. (i) Comparing (2.8) with (2.5), one sees that π] is related to π through the
partial Fourier transform on Rp+q with respect to the variables y1̄, . . . , yq̄ . In fact, if we
denote the dual variable of y ̄ by η ̄ , j = 1,2, . . . ,q, then π and π] interchange with each
other under the correspondence

−i ∂y ̄ ←→ η ̄, y ̄ ←→ i ∂η ̄ ( j = 1, . . . ,q);

the former operators −i ∂y ̄ and η ̄ are the realizations of x̂ ̄ , while the latter operators y ̄
and i ∂η ̄ are the realizations of ŷ ̄ .

(ii) Recall that one can obtain π] by differentiating the left regular representation
of G = O(p,q) on C∞(V), the space of complex-valued smooth functions on V , where
G acts on V by matrix multiplication under the identification of V with Rp+q given by
t(x ′, i y′′) ↔ t(x ′, y′′) (see e.g. [6,12]). As one can see from (2.7) and (2.9), π](X) coincides
with π(X) for all X ∈ k. Thus, the action π restricted to k0 lifts to the action of K on C∞(V).

3. Dual Pair (O(p, q), sl2(R))

Henceforth, let us denote x ′ = t(x1, . . . , xp) and y′′ = t(y1̄, . . . , yq̄) by

x = t(x1, . . . , xp) and y = t(y1, . . . , yq)

respectively for the sake of simplicity if there exists no risk of confusion. Namely, we
regard (x1, . . . , xp) and (y1, . . . , yq) as the canonical coordinate functions on Rp and on Rq

respectively.
If we denote the Casimir element of g by Ωg, then the corresponding Casimir operator

is given by

π(Ωg) = (Ex − Ey)
2 + (p − q)(Ex − Ey) − 2(Ex + Ey)

−

(
r2
x r2

y + r2
x ∆x + r2

y ∆y + ∆x ∆y

)
− pq,

(3.1)

where

Ex =
∑
i∈[p]

xi∂xi , r2
x =

∑
i∈[p]

x2
i , ∆x =

∑
i∈[p]

∂2
xi
,

Ey =
∑
j∈[q]

yj∂yj , r2
y =

∑
j∈[q]

y2
j , ∆y =

∑
j∈[q]

∂2
yj
.

(3.2)

Now, taking account of the fact that our realization of the representation operators of g given
in (2.7) is a partial Fourier transform of the ones given in [6,12] as we mentioned in Remark
2.2 (i) above, we define elements H,X+,X− of PD(V) by

H = −Ex −
p
2
+ Ey +

q
2
, X+ = −

1
2
(∆x + r2

y ), X− =
1
2
(r2
x + ∆y). (3.3)

Then, it is immediate to see that the commutation relations among them are given by

[H,X+] = 2X+, [H,X−] = −2X−, [X+,X−] = H.

Proposition 3.1. Let g′ := C-span {H,X+,X−}. Then g′ is a Lie subalgebra of PD(V)g

isomorphic to sl2 (= sl2(C)), where PD(V)g denotes the commutant of g in PD(V).
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Proof. Note that π(X+i, j), i, j ∈ [p], span the Lie subalgebra isomorphic to op commuting
with Ex,∆x and r2

x , and that π(X+ı̄, ̄), i, j ∈ [q], span the Lie subalgebra isomorphic to oq
commuting with Ey,∆y and r2

y . Hence, it remains to show that each π(X−i, j) commutes with
H,X+ and X− given in (3.3)

We will only show here that [π(X−i, j),X
+] = 0. The other cases can be shown similarly.

Now, one sees

−2i [π(X−i, j),X
+] =

[
xiyj + ∂xi ∂yj ,−∆x − r2

y

]
=

p∑
k=1

[
∂2
xk
, xi

]
yj −

q∑
l=1

∂xi
[
∂yj , y

2
l

]
=

p∑
k=1

2δk ,i∂xk yj −
q∑
l=1

2∂xi δj ,lyl

= 2∂xi yj − 2∂xi yj = 0.

This completes the proof.

If one denotes the Casimir element of g′ byΩg′ , then the corresponding Casimir operator
that is defined by

π(Ωg′) = H2 + 2(X+X− + X−X+)

= H2 − 2H + 4X+X−

= H2 + 2H + 4X−X+

is concretely written in terms of the operators given by (3.2) as follows:

π(Ωg′) = (Ex − Ey)
2 + (p − q)(Ex − Ey) − 2(Ex + Ey)

−

(
r2
x r2

y + r2
x ∆x + r2

y ∆y + ∆x ∆y

)
+

1
4
(p − q)2 − (p + q).

(3.4)

It follows from (3.1) and (3.4) that

π(Ωg) = π(Ωg′) −
1
4
(p + q)2 + (p + q)

(see [4, 12]).
In what follows, we denote byHk(Rn) the space of homogeneous harmonic polynomials

on Rn of degree k and set H(Rn) :=
⊕∞

k=0 H
k(Rn). It is well known that Hk(Rn) is an

irreducible O(n)-module and its dimension is given by

dimHk(Rn) =

(
k + n − 1

n − 1

)
−

(
k + n − 3

n − 1

)
=
(k + n − 3)!
k! (n − 2)!

(2k + n − 2)

if n > 2 and k ∈ N, where
(ν
i

)
denotes the binomial coefficient. Note that it can be further

rewritten as

dimHk(Rn) =
2(k + n/2 − 1)
(n − 2)!

(k + 1)(k + 2) · · · (k + n − 3). (3.5)
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Now, we will find a highest weight vector with respect to the g′-action (3.3), i.e. a
function f on V which satisfies

H f = λ f and X+ f = 0 (3.6)

for some λ ∈ C. Taking account of the fact that the algebra of polynomial functions on V ,
which we denote by P(V), can be written as

P(V) ' C[x1, . . . , xp] ⊗ C[y1, . . . , yq]

'

∞⊕
k=0

(
C[r2

x ] ⊗Hk(Rp)

)
⊗

∞⊕
l=0

(
C[r2

y ] ⊗Hl(Rq)
)

'

∞⊕
k ,l=0

Hk(Rp) ⊗Hl(Rq) ⊗ C[r2
x,r

2
y ],

we will seek for a function that satisfies (3.6) of the form

f (x, y) = h1(x)h2(y)φ(r2
x,r

2
y ), (3.7)

where h1 ∈ Hk(Rp), h2 ∈ Hl(Rq) are harmonic polynomials, and φ(s, t) ∈ C[[s, t]] is a
formal power series (Caution: we do not assume that φ is a polynomial). Namely, our
function f on V lives in the space Ẽ defined by

Ẽ :=
∞⊕

k ,l=0
Hk(Rp) ⊗Hl(Rq) ⊗ C[[r2

x,r
2
y ]] (algebraic direct sum). (3.8)

Recall that the action π of k0 lifts to the action of K on Ẽ as we mentioned in Remark 2.2
(ii), which we denote by the same letter π.

Lemma 3.1. Let ∆ =
∑n

i=1 ∂
2
xi
and r2 =

∑n
i=1 x2

i . For a homogeneous harmonic polynomial
h = h(x1, . . . , xn) on Rn of degree d and for a smooth function ϕ(u) in a single variable u,
we have

∆(hϕ(r2)) = (4d + 2n)hϕ′(r2) + 4r2hϕ′′(r2). (3.9)

Proof. Since ∂xiϕ(r2) = 2xiϕ′(r2) and ∂2
xi
ϕ(r2) = 2ϕ′(r2) + 4x2

i ϕ
′′(r2), one obtains

∆ϕ(r2) = 2nϕ′(r2) + 4r2ϕ′′(r2).

Thus,

∆(hϕ(r2)) =

n∑
i=1

(
∂2
xi

h · ϕ(r2) + 2∂xi h · ∂xiϕ(r
2) + h · ∂2

xi
ϕ(r2)

)
= 4dhϕ′(r2) + h∆ϕ(r2)

= 4dhϕ′(r2) + h
(
2nϕ′(r2) + 4r2ϕ′′(r2)

)
= (4d + 2n)hϕ′(r2) + 4r2hϕ′′(r2).

This completes the proof.
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For h1 ∈ H
k(Rp) (resp. h2 ∈ H

l(Rq)), we define its shifted degree by κ+(h1) := k + p/2
(resp. κ−(h2) := l + q/2), which we denote just by κ+ (resp. κ−) if there is no risk of
confusion.

It follows from Lemma 3.1 that if f is of the form in (3.7) then

X+ f = −
1
2
(∆x(h1h2φ) + r2

y h1h2φ)

= −2h1h2

(
r2
x (∂

2
s φ)(r

2
x,r

2
y ) + κ+(∂sφ)(r

2
x,r

2
y ) +

r2
y

4
φ(r2

x,r
2
y )

)
,

which shows that f = h1(x)h2(y)φ(r2
x,r

2
y ) satisfies X+ f = 0 if and only if φ is a solution to

a differential equation

s∂2
s φ + κ+∂sφ +

t
4φ = 0 (3.10)

with κ+ = κ+(h1) = k + p/2. Solving the differential equation (3.10) by power series, one
obtains that

φ(s, t) = a0

∞∑
n=0

(−1)n

n!(κ+)n

( s t
4

)n
, (3.11)

where a0 is an arbitrary formal power series in t. Note that if one defines a power series Ψα
by

Ψα(u) :=
∞∑
n=0

(−1)n

n! (α)n
un = 1 −

u
α
+

u2

2!α(α + 1)
−

u3

3!α(α + 1)(α + 2)
+ · · · (3.12)

for α ∈ Cr (−N), then it converges on the whole C and is a unique solution to a differential
equation

uΨ′′α (u) + αΨ
′
α(u) + Ψα(u) = 0 (3.13)

that satisfies the initial condition Ψα(0) = 1.
In the sequel, we set

ψ
(n)
α := Ψ(n)α (r2

xr2
y/4) (n ∈ N) (3.14)

for brevity, where Ψ(n)α (u) denotes the n-th derivative of Ψα(u) in u.
If, in addition, f satisfies that H f = λ f for some λ ∈ C, then the factor a0 in (3.11) is

equal to tµ− up to a constant multiple, with µ− = (1/2)(λ + κ+ − κ−) ∈ N, κ+ = κ+(h1) and
κ− = κ−(h2).

Thus, for given h1 ∈ Hk(Rp) and h2 ∈ Hl(Rq), if f = f (x, y) of the form (3.7) is a
highest weight vector with respect to the g′-action, i.e. it satisfies (3.6), then φ(r2

x,r
2
y ) is a

constant multiple of r2µ−
y ψκ+ , and the weight of f is given by

λ = −κ+ + κ− + 2µ− (µ− ∈ N). (3.15)

Similarly, for given h1 ∈ H
k(Rp) and h2 ∈ H

l(Rq), one can show that if f = f (x, y) of
the form (3.7) is a lowest weight vector with respect to the g′-action, i.e. it satisfies

H f = λ f and X− f = 0 (3.16)
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for some λ ∈ C, then φ(r2
x,r

2
y ) is a constant multiple of r2µ+

x ψκ− , and the weight of f is given
by

λ = −κ+ + κ− − 2µ+ (µ+ ∈ N). (3.17)

Let us summarize the above argument in the following.

Proposition 3.2. Given h1 ∈ H
k(Rp) and h2 ∈ H

l(Rq), let f = f (x, y) be a function of the
form

f (x, y) = h1(x)h2(y)φ(r2
x,r

2
y ) (φ(r2

x,r
2
y ) ∈ C[[r

2
x,r

2
y ]]). (3.18)

If f given in (3.18) is a highest (resp. lowest) weight vector with respect to the g′-action,
i.e. it satisfies (3.6) (resp. (3.16)), then φ(r2

x,r
2
y ) is a constant multiple of r2µ−

y ψκ+ (resp.
r2µ+
x ψκ− ) and the weight λ of f is equal to −κ+ + κ− + 2µ− (resp. −κ+ + κ− − 2µ+).

Here κ+ = κ+(h1) = k + p/2, κ− = κ−(h2) = l + q/2, µ+, µ− ∈ N, and ψκ± is an element
of C[[r2

x,r
2
y ]] given by (3.14) with α = κ±.

Taking account of the discussion so far, let us introduce the subspace E of Ẽ by

E := C-span
{

h1(x)h2(y)r2a
x r2b

y ψα ∈ Ẽ

���� h1 ∈ H(R
p), h2 ∈ H(R

q),

a, b ∈ N, α ∈ C r (−N)

}
.

Then one will find that E is stable under the action of (g,K) as well as that of g′ (see
Propositions 3.3 and 3.4 below).

Remark 3.1. (i) The function Ψα given in (3.12) can be written in terms of the Bessel
function Jν of the first kind of order ν

Jν(t) =
∞∑
n=0

(−1)n

n! Γ(n + ν + 1)

( t
2

)ν+2n

that solves the Bessel’s differential equation

d2w

d t2 +
1
t

dw
d t
+

(
1 −

ν2

t2

)
w = 0 (3.19)

(see e.g. [14]). Namely, one has

Ψα(u) = Γ(α) u−(α−1)/2Jα−1(2 u1/2). (3.20)

Therefore,

ψα = Γ(α)
( rxry

2

)−(α−1)
Jα−1(rxry).

Note that (3.13) corresponds to (3.19) under (3.20).
(ii) Recall that our representation π is related to π] via the partial Fourier transform

with respect to y1, . . . , yq , as we mentioned in Remark 2.2 (i). Namely, one can obtain
π] by replacing −i ∂yj and yj in π by ηj and i ∂η j , j = 1, . . . ,q, respectively. Under this
correspondence, one finds that H = −Ex − p/2+Ey +q/2 and X+ = − 1

2 (∆x +r2
y ) transform,
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up to constant multiples, into the shifted degree operator Ẽp,q and the d’Alembertian �p,q
on Rp+q that are given by

Ẽp,q =

p∑
i=1

xi∂xi +
q∑
j=1

ηj∂η j +
p + q

2
,

�p,q =

p∑
i=1

∂2
xi
−

q∑
j=1

∂2
η j
,

respectively. Therefore, the highest weight vector f satisfying H f = λ f for some λ ∈ C
and X+ f = 0 corresponds to a homogeneous solution f̃ to the equation �p,q f̃ = 0.

Note that Ψ(n)α is equal to Ψα+n up to a constant multiple. In fact, differentiating both
sides of (3.13) n times, one obtains

uΨ(n+2)
α (u) + (α + n)Ψ(n+1)

α (u) + Ψ(n)α (u) = 0. (3.21)

SinceΨα+n is a unique solution to (3.13) with α replaced by α+n that satisfiesΨα+n(0) = 1,
it follows that Ψ(n)α = (−1)n/(α)nΨα+n. Thus, one obtains

ψ
(n)
α =

(−1)n

(α)n
ψα+n (n ∈ N). (3.22)

In what follows, we set ρx := r2
x/2 and ρy := r2

y/2 for economy of space. Then, it follows
from (3.21) and (3.22) that

ρxρyψα+2 = α(α + 1)(ψα+1 − ψα) (3.23)

for α ∈ C r (−N). Furthermore, setting ρ := r2/2, one can rewrite (3.9) as
1
2
∆(hϕ(ρ)) =

(
d +

n
2

)
hϕ′(ρ) + hρϕ′′(ρ), (3.24)

where h,∆,r2 and ϕ are as in Lemma 3.1.

Proposition 3.3. For f = h1h2ρ
a
x ρ

b
yψα ∈ E, one has

H
(
h1h2ρ

a
x ρ

b
yψα

)
= (−κ+ + κ− − 2a + 2b)h1h2ρ

a
x ρ

b
yψα, (3.25)

X+
(
h1h2ρ

a
x ρ

b
yψα

)
= h1h2

(
−a(κ+ + a − 1)ρa−1

x ρbyψα +
κ++2a−α

α ρax ρ
b+1
y ψα+1

)
, (3.26)

X−
(
h1h2ρ

a
x ρ

b
yψα

)
= h1h2

(
b(κ− + b − 1)ρax ρ

b−1
y ψα −

κ−+2b−α
α ρa+1

x ρbyψα+1

)
. (3.27)

In particular, the g′-action preserves the K-type of each element of E.

Proof. It is immediate to show (3.25), and we will only show (3.26) here; the other case
(3.27) can be shown similarly.

Setting ϕ(u) := uaΨα(ρyu), one sees

ϕ′(u) = aua−1
Ψα(ρyu) + uaρyΨ

′
α(ρyu),

ϕ′′(u) = a(a − 1)ua−2
Ψα(ρyu) + 2aua−1ρyΨ

′
α(ρyu) + uaρ2

yΨ
′′
α (ρyu).
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Hence it follows from (3.24) that
1
2
∆x(h1ρ

a
xψα) = a(κ+ + a − 1)h1ρ

a−1
x ψα + (κ+ + 2a)h1ρ

a
x ρyψ

′
α + h1ρ

a+1
x ρ2

yψ
′′
α

= h1

(
a(κ+ + a − 1)ρa−1

x ψα + (κ+ + 2a − α)ρax ρyψ
′
α − ρ

a
x ρyψα

)
since ρxρyψ ′′α = −αψ ′α − ψα. Therefore, one obtains that

X+(h1h2ρ
a
x ρ

b
yψα) = −

1
2
(∆x + 2ρy)(h1h2ρ

a
x ρ

b
yψα)

= −a(κ+ + a − 1)h1h2ρ
a−1
x ρbyψα − (κ+ + 2a − α)h1h2ρ

a
x ρ

b+1
y ψ ′α,

which, by (3.22), equals the right-hand side of (3.26). This completes the proof.

We conclude this section by calculating the action of p on E, i.e. π(X−i, j) f for X−i, j ∈ p
and f ∈ E.

For a homogeneous polynomial P = P(x1, . . . , xn) on Rn of degree d, set

P† := P −
r2

4(d + n/2 − 2)
∆P,

where ∆ =
∑n

i=1 ∂
2
xi
and r2 =

∑n
i=1 x2

i . Note that if ∆
2P = 0 then P† is harmonic by Lemma

3.1, and that if h = h(x1, . . . , xn) is harmonic then ∆(xih) = 2∂xi h and ∆2(xih) = 0.

Proposition 3.4. For f = h1h2ρ
a
x ρ

b
yψα ∈ E, one has

−i π(X−i, j)
(
h1h2ρ

a
x ρ

b
yψα

)
= (∂xi h1)(∂yj h2)ρ

a
x ρ

b
y

(
(κ++a−α)(κ−+b−α)
(κ+−1)(κ−−1) ψα +

(α−1)(κ++κ−+a+b−α−1)
(κ+−1)(κ−−1) ψα−1

)
+ (∂xi h1)(yjh2)

†
(
−
κ++a+b−α
α(κ+−1) ρ

a+1
x ρbyψα+1 +

b(κ++a−1)
κ+−1 ρax ρ

b−1
y ψα

)
+ (xih1)

†(∂yj h2)
(
−
κ−+a+b−α
α(κ−−1) ρ

a
x ρ

b+1
y ψα+1 +

a(κ−+b−1)
κ−−1 ρa−1

x ρbyψα

)
+ (xih1)

†(yjh2)
†
(
− a+b+1−α

α ρax ρ
b
yψα+1 + abρa−1

x ρb−1
y ψα

)
,

(3.28)

where one regards ∂xi h1/(κ+ − 1) (resp. ∂yj h2/(κ− − 1)) as zero when κ+ = 1 (resp. κ− = 1).

Proof. Since ∂xiψα = ρy xiψ ′α and ∂yjψα = ρx yjψ ′α, one obtains

−i π(X−i, j) f = (∂xi ∂yj + xiyj)(h1h2ρ
a
x ρ

b
yψα)

= (∂xi h1)(∂yj h2)ρ
a
x ρ

b
yψα + (xih1)(∂yj h2)

(
aρa−1

x ρbyψα + ρ
a
x ρ

b+1
y ψ ′α

)
+ (∂xi h1)(yjh2)

(
bρax ρ

b−1
y ψα + ρ

a+1
x ρbyψ

′
α

)
+ (xih1)(yjh2)

(
ρax ρ

b
yψα + abρa−1

x ρb−1
y ψα + (a + b + 1)ρax ρbyψ ′α + ρa+1

x ρb+1
y ψ ′′α

)
.

(3.29)
Now, by definition, one has

xih1 = (xih1)
† +

ρx
κ+ − 1

∂xi h1 and yjh2 = (yjh2)
† +

ρy

κ− − 1
∂yj h2. (3.30)
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Substituting (3.30) into (3.29), and using the relations (3.22) and (3.23), one sees that the
coefficient of (∂xi h1)(∂yj h2) in (3.29) equals the one of (∂xi h1)(∂yj h2) in the right-hand
side of (3.28). One can verify that each coefficient of (∂xi h1)(yjh2)

†, (xih1)
†(∂yj h2) and

(xih1)
†(yjh2)

† in (3.29) equals the one of the corresponding terms in (3.28) similarly. This
completes the proof.

4. (g, K)-module associated with finite-dimensional sl2-module

If a nonzero f ∈ E satisfies H f = λ f , X+ f = 0 and (X−)m+1 f = 0 (resp. H f = λ f , X− f =
0 and (X+)m+1 f = 0) for some m ∈ N, then it follows from the representation theory of
g′ = sl2 that λ = m (resp. λ = −m). Thus, we introduce (g,K)-modules associated with
the finite-dimensional sl2-module Fm of dimension m + 1 as follows, which are the main
objects of this paper.

Definition 4.1. Given m ∈ N, we define (g,K)-modules M±(m) by

M+(m) :=
{

f ∈ E
�� H f = m f ,X+ f = 0, (X−)m+1 f = 0

}
,

M−(m) :=
{

f ∈ E
�� H f = −m f ,X− f = 0, (X+)m+1 f = 0

}
.

The modules M±(m) were originally introduced in [12] without the condition of finite
dimensionality. Note that M+(0) is identical to M−(0) by definition and that both M±(m)
should correspond to the sl2-module Fm under the Howe duality (cf. [5]).

If M+(m) , {0} (resp. M−(m) , {0}), then one sees that p ≡ q mod 2; for, if one
takes a nonzero f = h1h2ρ

µ−
y ψκ+ ∈ M+(m) (resp. f = h1h2ρ

µ+
x ψκ− ∈ M−(m)) with h1 ∈

Hk(Rp), h2 ∈ H
l(Rq) and µ± ∈ N, then

±m = −κ+ + κ− ± 2µ∓ = −k + l −
p − q

2
± 2µ∓ ∈ Z (4.1)

by (3.15) (resp. (3.17)). Hence one obtains (p − q)/2 ∈ Z. Therefore, we assume that p ≡ q
mod 2 in the rest of this paper.

Lemma 4.1. For h1 ∈ H
k(Rp), h2 ∈ H

l(Rq) and m ∈ N, let

v+ = h1h2ρ
µ−
y ψκ+ ∈ M+(m) and v− = h1h2ρ

µ+
x ψκ− ∈ M−(m), (4.2)

where µ+, µ− ∈ N such that µ+ + µ− = m. Then the g′-module generated by v+ coincides
with the one generated by v−:

〈v+〉g′ = 〈v
−〉g′ .

Proof. Both v+ and (X+)mv− (resp. v− and (X−)mv+) are elements of E ⊂ Ẽ that are
highest (resp. lowest) weight vectors of weight m (resp. −m) under g′-action. Namely, they
are solutions in Ẽ to the differential equation

H f = ±m f and X± f = 0.

As we mentioned in Proposition 3.2, they are respectively equal to each other up to a
constant multiple. This completes the proof.
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Proposition 4.1. For m ∈ N, M+(m) and M−(m) are isomorphic to each other.

Proof. For h1 ∈ H
k(Rp) and h2 ∈ H

l(Rq), set

v+ = h1h2ρ
µ−
y ψκ+ ∈ M+(m) and v− = h1h2ρ

µ+
x ψκ− ∈ M−(m).

with µ+ + µ− = m as in (4.2). Then, (X+)mv− (resp. (X−)mv+) is equal to v+ (resp. v−) up
to a constant multiple as we saw in Lemma 4.1, and thus, (X+)m(X−)mv+ is equal to v+ up
to a constant multiple. In fact, (X+)m(X−)mv+ = (m!)2v+. Therefore,

(X−)m : M+(m) −→ M−(m)

provides an isomorphism of (g,K)-module. This completes the proof.

Now we prepare two lemmas to prove our main result. Note that Lemma 4.2 below is
just a special case of Proposition 3.4. However, we state it separately to highlight the rôle
of the relation (3.23).

Lemma 4.2. Let h1 ∈ H
k(Rp) and h2 ∈ H

l(Rq), and set κ+ = k + p/2, κ− = l + q/2.

(1) For a highest weight vector f = h1h2ρ
µ−
y ψκ+ ∈ E, π(X−i, j) f is given by

−i π(X−i, j)
(
h1h2ρ

µ−
y ψκ+

)
=
κ− + µ− − 1
κ− − 1

(∂xi h1)(∂yj h2)ρ
µ−
y ψκ+−1

+ µ−(∂xi h1)(yjh2)
†ρ
µ−−1
y ψκ+−1

+
κ+ − κ− − µ−
κ+(κ− − 1)

(xih1)
†(∂yj h2)ρ

µ−+1
y ψκ++1

+
κ+ − µ− − 1

κ+
(xih1)

†(yjh2)
†ρ
µ−
y ψκ++1.

(4.3)

(2) For a lowest weight vector f = h1h2ρ
µ+
x ψκ− , π(X−i, j) f is given by

−i π(X−i, j)
(
h1h2ρ

µ+
x ψκ−

)
=
κ+ + µ+ − 1
κ+ − 1

(∂xi h1)(∂yj h2)ρ
µ+
x ψκ−−1

+
κ− − κ+ − µ+
κ−(κ+ − 1)

(∂xi h1)(yjh2)
†ρ
µ++1
x ψκ−+1

+ µ+(xih1)
†(∂yj h2)ρ

µ+−1
x ψκ−−1

+
κ− − µ+ − 1

κ−
(xih1)

†(yjh2)
†ρ
µ+
x ψκ−+1.

(4.4)

Proof. We only show (4.3) here. The other formula (4.4) can be shown similarly.
Set a = 0, b = µ− and α = κ+ in (3.28). Then, using the relation (3.23) with α = κ+ − 1,

i.e.

ρxρyψκ++1 = κ+(κ+ − 1)(ψκ+ − ψκ+−1),

one sees that the coefficient of (∂xi h1)(yjh2)
† equals

−
µ−

κ+(κ+ − 1)
ρxρ

µ−
y ψκ++1 + µ−ρ

µ−−1
y ψκ+

= µ−ρ
µ−−1
y ψκ+−1.
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To show for the other coefficients is trivial and omitted.

Lemma 4.3. Let h1 ∈ H
k(Rp) and h2 ∈ H

l(Rq), and set κ+ = k + p/2, κ− = l + q/2.

(1) For a highest weight vector f = h1h2ρ
µ−
y ψκ+ of weight λ = −κ+ + κ− + 2µ−, one has

(X−)ν f = h1h2

ν∑
i=0

(
ν

i

)
(−λ + ν − 1)−i (µ−)

−
ν−i(κ− + µ− − 1)−ν−i
(κ+)i

ρixρ
µ−−ν+i
y ψκ++i (4.5)

for ν = 0,1,2, . . . .
(2) For a lowest weight vector f = h1h2ρ

µ+
x ψκ− of weight λ = −κ+ + κ− − 2µ+, one has

(X+)ν f = (−1)νh1h2

ν∑
i=0

(
ν

i

)
(λ + ν − 1)−i (µ+)

−
ν−i(κ+ + µ+ − 1)−ν−i
(κ−)i

ρ
µ+−ν+i
x ρiyψκ−+i

(4.6)
for ν = 0,1,2, . . . .

Proof. We only show (4.6) by induction on ν here. The other case (4.5) can be shown
similarly.

It is trivial if ν = 0, and it is nothing but Propostion 3.3 if ν = 1. Assume that it is true
for ν > 1, and apply X+ to the both sides of (4.6). Then, one sees that the right-hand side
equals

(−1)νh1h2

ν∑
i=0

(
ν

i

)
(λ + ν − 1)−i (µ+)

−
ν−i(κ+ + µ+ − 1)−ν−i
(κ−)i

×

(
−(µ+ − ν + i)(κ+ + µ+ − ν + i − 1)ρµ+−ν+i−1

x ρiyψκ−+i +
−λ + i − 2ν
κ− + i

ρ
µ+−ν+i
x ρi+1

y ψκ−+i+1

)
.

(4.7)
The coefficient of (−1)νh1h2ρ

µ+−ν+j−1
x ρ

j
yψκ−+j in (4.7), j = 0,1, . . . , ν + 1, equals(

ν

j

)
(λ + ν − 1)−j (µ+)

−
ν−j(κ+ + µ+ − 1)−ν−j
(κ−)j

· (−1)(µ+ − ν + j)(κ+ + µ+ − ν + j − 1)

+

(
ν

j − 1

)
(λ + ν − 1)−

j−1(µ+)
−
ν−j+1(κ+ + µ+ − 1)−ν−j+1

(κ−)j−1
·
−(λ + 2ν − j + 1)

κ− + j − 1

= −

{ (
ν

j

)
(λ + ν − j) +

(
ν

j − 1

)
(λ + 2ν − j + 1)

}
×
(µ+)

−
ν−j+1(κ+ + µ+ − 1)−ν−j+1(λ + ν − 1)−

j−1

(κ−)j

= −

(
ν + 1

j

)
(λ + ν)−j (µ+)

−
ν−j+1(κ+ + µ+ − 1)−ν−j+1

(κ−)j
.

This completes the proof.

The following is our main result.
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Theorem 4.1. Assume that p > 1, q > 1 and p + q ∈ 2N. Let m ∈ N be a nonnegative
integer satisfying m + 3 6 (p + q)/2. Then one has the following.

The K-type formula of M±(m) is given by

M±(m)
��
K
'

⊕
k ,l>0

k−l+
p−q

2 ∈Λm

Hk(Rp) ⊗Hl(Rq), (4.8)

where Λm = {−m,−m + 2,−m + 4, . . . ,m − 2,m}, the set of H-weights of Fm;
(2) Suppose further that p,q > 2. Then M±(m) are irreducible (g,K)-modules.

Proof. It suffices to show the theorem for M+(m). Let f = h1h2ρ
µ−
y ψκ+ , 0 be an element

of M+(m), where h1 ∈ H
k(Rp), h2 ∈ H

l(Rq). Then by Lemma 4.3, one obtains

(X−)m+1 f = h1h2

m+1∑
i=0

(
m + 1

i

)
(0)−i (µ−)

−
m+1−i(κ− + µ− − 1)−

m+1−i
(κ+)i

ρixρ
µ−−m−1+i
y ψκ++i

= (µ−)
−
m+1(κ− + µ− − 1)−m+1h1h2ρ

µ−−m−1
y ψκ+ .

Thus, (X−)m+1 f = 0 implies that (µ−)−m+1 = 0 or (κ− + µ− − 1)−
m+1 = 0. Namely,

µ− = 0,1, . . . ,m, or (4.9)
µ− = −κ− + 1, −κ− + 2, . . . , −κ− + m + 1. (4.10)

The assumption that m + 3 6 (p + q)/2, however, implies that (4.10) is impossible; if it
holded true, then by (4.1), one would obtain

−m + 2 6 κ+ + κ− 6 m + 2,

which contradicts κ+ + κ− > (p + q)/2 > m + 3. Therefore, it follows from (4.9) that

k − l +
p − q

2
= κ+ − κ− = −m + 2µ− ∈ Λm,

which proves (1).
Let us consider a closed subset Dm ⊂ R

2 (with respect to the Euclidean topology of R2)
given by

Dm =
{
(t1, t2) ∈ R2 �� t1 > p/2, t2 > q/2, | t1 − t2 | 6 m

}
, (4.11)

and the set of integral points of Dm given by

Σm =

{
(t1, t2) ∈ Dm

���� t1 − p/2 ∈ N, t2 − q/2 ∈ N,
t1 − t2 ∈ Λm

}
. (4.12)

Note that the sum in the right-hand side of (4.8) can be written as the one with (κ+, κ−)
running over the set Σm.

Now, applying (4.3) to f = h1h2ρ
µ−
y ψκ+ ∈ M+(m), we denote the coefficient of

(∂xi h1)(∂yj h2), (xih1)
†(∂yj h2), (∂xi h1)(yjh2)

† and (xih1)
†(yjh2)

†
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in the right-hand side of (4.3) byC−−,C+−,C−+ andC++ respectively,where µ− = 0,1, . . . ,m.
Namely,

C−− =
κ− + µ− − 1
κ− − 1

ρ
µ−
y ψκ+−1, C−+ = µ− ρ

µ−−1
y ψκ+−1,

C+− =
κ+ − µ− − κ−
κ+(κ− − 1)

ρ
µ−+1
y ψκ++1, C++ =

κ+ − µ− − 1
κ+

ρ
µ−
y ψκ++1.

(i) First, let us consider the case where (κ+, κ−) ∈ Σm is an interior point of Dm. Note then
that κ+ and κ− are > 1 by the assumption that p, q > 2. Then, one obtains µ− = 1,2, . . . ,m−1
by (4.9). In particular,C−+ , 0. Now,C−− = 0 would imply µ− = −κ−+1, which contradicts
m + 3 6 (p + q)/2 as we saw above. It also follows from (4.1) that κ− − κ+ + µ− = m − µ−,
and C+− , 0. Finally, C++ = 0 would imply that κ+ + κ− = m+ 2, which is absurd. Thus, all
the coefficients in (4.3) never vanish.
(ii) Next, let us consider the case where (κ+, κ−) ∈ Σm is in the boundary of Dm. Then there
are three sub-cases:

(ii-a) µ− = 0,
(ii-b) µ− = m,
(ii-c) 0 < µ− < m and k = 0 or l = 0.

In Case (ii-a), C−+ = 0, and, C−−, C+− and C++ are nonzero by the same reason as Case
(i). In Case (ii-b), C+− = 0 since κ+ − κ− = m, and all the other coefficients are nonzero. In
Case (ii-c), all the coefficients are nonzero, but ∂xi h1 = 0 or ∂yj h2 = 0.

Therefore, by applying π(X), X ∈ p, one can move from any K-type in M+(m) to any
other K-type in M+(m), while π(X), X ∈ k, preserves the K-type of each element of M+(m).
This completes the proof of (2), and of the theorem.

Example 4.1. Figure 1 below illustrates Dm in (4.11) and Σm in (4.12) in the case where
p = 14, q = 12 and m = 4. The colored area and the dots sitting in the area indicates Dm

and Σm respectively. Each K-type of M±(m) corresponds to a dot by the correspondence

Hk(Rp) ⊗Hl(Rq) ←→ (k + p/2, l + q/2).

Let us apply π(X−i, j) to an element f of M±(m). Then, if the K-type of f corresponds to
a white dot ◦ in Fig. 1, one can move to any adjacent dots in the north-east, north-west,
south-east, and south-west direction; if it corresponds to a black dot • in Fig. 1, one can
move only to adjacent dots in the interior or in the boundary of Dm.

Now, let us briefly recall the definitions of the Gelfand-Kirillov dimension and the
Bernstein degree of a finitely generated U(g)-module M , where U(g) denotes the universal
enveloping algebra of g. Namely, we choose a finite-dimensional subspace M0 so that
M = U(g)M0, and for each nonnegative integer n, we set Mn := Un(g)M0, with Un(g)

denoting the subspace of U(g) spanned by products of at most n elements of g. Then there
exists a polynomial ψM (t) ∈ Q[t] of degree d − 1 such that

ψM (n) = dim(Mn/Mn−1) for all sufficiently large n.
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κ+

κ−

k

l

q/2

p/2

m

κ+ − κ− = −m
. . .

0

κ+ − κ− = 0
. . .

m

κ+ − κ− = m

Fig. 1. Applying π(X−i, j ), one can move from ◦ to dots in NE, NW, SE and SW directions, while from
•, only to dots in the interior or in the boundary.

Moreover, the leading term of ψM is of the form
m

(d − 1)!
td−1

for a positive integer m. We call d the Gelfand-Kirillov dimension of M , and m its Bernstein
degree, which we denote by Dim M and Deg M respectively (see [13] for more details).

Corollary 4.1. If p,q > 2, p + q ∈ 2N and m + 3 6 (p + q)/2, then the Gelfand-Kirillov
dimension and the Bernstein degree of M±(m) are given by

Dim M±(m) = p + q − 3, (4.13)

Deg M±(m) =
4(m + 1)(p + q − 4)!
(p − 2)!(q − 2)!

(4.14)

respectively.

Proof. Without loss of generality, one can assume that p > q. We will consider M+(m)
here. Then, let `( j) be a line in R2 given by

`( j) =
{
(t1, t2) ∈ R2 | t1 + t2 = j

}
with j ∈ N, and set

c := min { j ∈ N | ](`( j) ∩ Σm) = m + 1 } . (4.15)

As a generating (K-invariant) subspace of M+(m), we take

M0 :=
⊕

(κ+ ,κ−)∈Σm
κ++κ−6c

Hk(Rp) ⊗Hl(Rq)ρ
µ−
y ψκ+, (4.16)
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where, in each summand, µ− is determined by µ− = (1/2)(κ+ − κ− + m). If one sets
Mn := Un(g)M0 (M−1 := 0), then it follows from (4.8) and (3.5) that

dim(Mn/Mn−1)

=

m∑
j=0

dim (Hn+j(Rp) ⊗Hn+m−j+
p−q

2 (Rq))

= 4
m∑
j=0

n + j + p
2 − 1

(p − 2)!
(n + j + 1)(n + j + 2) · · · (n + j + p − 3)

×
n + m − j + p−q

2 +
q
2 − 1

(q − 2)!
(n + m − j + p−q

2 + 1)(n + m − j + p−q
2 + 2)

· · · (n + m − j + p−q
2 + q − 3)

=
4(m + 1)

(p − 2)!(q − 2)!
np+q−4 + (lower order terms in n) (4.17)

for all n ∈ N, which implies (4.13). Furthermore, since the leading term of (4.17) can be
rewritten as

4(m + 1)
(p − 2)!(q − 2)!

np+q−4 =
4(m + 1)(p + q − 4)!
(p − 2)!(q − 2)!

np+q−4

(p + q − 4)!
,

one obtains (4.14). This completes the proof.

Remark 4.1. One can show that the nonnegative integer c in (4.15) is in fact equal to
max{m + p,m + q}.

It is well known that the Gelfand-Kirillov dimension of the minimal representation of
O(p,q) is equal to p+ q− 3 (cf. [8–10,16]). The K-type formula (4.8) of M+(0) = M−(0) in
Theorem 4.1 shows that it corresponds to the (g,K)-module of the minimal representation
of O(p,q). However, as we have seen in Corollary 4.1, the Gelfand-Kirillov dimension of
M±(m) is equal to p + q − 3 for any m ∈ N satisfying m + 3 6 (p + q)/2. The Bernstein
degree distinguishes the minimal representation from the others.
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