1	Impact of high-load resistance training on bone mineral density in
2	osteoporosis and osteopenia: a meta-analysis
3	
4	Authors: Yuki Kitsuda ¹⁾ , Takashi Wada ¹⁾ , Hisashi Noma ²⁾ , Mari Osaki ¹⁾ , Hiroshi
5	Hagino ^{1,3)}
6	1) Rehabilitation Division, Tottori University Hospital
7	Address: 683-8504 36-1 Nishi-cho, Yonago, Tottori, Japan.
8	2) Department of Data Science, The Institute of Statistical Mathematics
9	Address: 190-8562 10-3 Midori-cho, Tachikawa, Tokyo, Japan.
10	3) School of Health Science, Faculty of Medicine, Tottori University
11	Address: 683-8503 86 Nishi-cho, Yonago, Tottori, Japan.
12	
13	Corresponding author:
14	Yuki Kitsuda
15	E-mail: y-kitsuda@tottori-u.ac.jp
16	Address: 683-8504 36-1 Nishi-cho, Yonago, Tottori, Japan
17	Tel: +81-859-38-6862 (Direct line to Rehabilitation Division)
18	Fax: +81-858-38-7029

- 19 Keywords: osteoporosis, exercise, resistance training, bone mineral density,
- 20 meta-analysis

22 Abstract

23 Introduction

24 Osteoporosis is defined as a bone disorder that increases the risk of fracture due to 25 decreased bone strength [1]. Osteoporosis leads to fragility fractures, thereby decreasing 26 the quality of life and increasing the mortality rates and overall economic costs [2]. A 27 study reported that the numbers of both men and women at high risk of osteoporosis 28 fractures in 2010 are expected to double by 2040 [3], which emphasizes that this 29 condition needs urgent attention. 30 Increasing bone mineral density (BMD) is key in preventing and treating osteoporosis, 31 and exercise intervention involving load is recommended as a non-pharmacotherapeutic 32 approach to increase BMD [4]. It has been shown that typical load exercises, such as 33 resistance training, are effective in increasing BMD [5], and effective strategies have 34 been studied from various perspectives, such as types, frequency, and combination of 35 training [6, 7]. 36 Load quantity is an important factor in resistance training, and there are reports 37 linking the load quantity in resistance training to the resulting BMD. In a meta-analysis 38 of 14 randomized controlled trials (RCTs) to investigate the effect of high-load 39 resistance training (HLRT) on the BMD in post-menopausal women, HLRT led to a

40	significant increase in BMD in the lumbar spine, but not in the femoral neck [8]. It has
41	been suggested that HLRT is more beneficial than normal resistance training in
42	improving lower limb strength [9], and it is the most effective approach in strengthening
43	muscles, regardless of the age [10, 11]. Reports in recent years have revealed that a
44	decline in muscle strength is directly involved in bone fracture risks [12], and HLRT,
45	which can improve both muscle strength and BMD simultaneously, may become an
46	effective intervention to prevent fragility fractures.
47	Meta-analyses that examined HLRT and its effect on BMD have been limited to
48	post-menopausal women and did not strictly concern osteopenia patients. The
49	prevalence of osteoporosis is not low in men [13], which indicates that studies need to
50	be performed on all patients with osteopenia, including males. In recent years, there has
51	been an increase in the number of studies on osteoporosis patients [14, 15] and men [16,
52	17]. Although these studies reported that HLRT improved BMD, due to some
53	differences in indicators used to evaluate BMD and small sample sizes obscuring the
54	improvement in BMD being seen relative to the control group, there is yet to find a
55	consensus on the relationship between HLRT and BMD.
56	Therefore, we aimed to verify the effect of HLRT on BMD in patients with
57	osteoporosis using systematic review and meta-analysis approaches.

58 Materials and Methods

59 Database searching

60 We conducted a systematic review according to the procedures recommended in the 61 PRISMA Statement [18]. A comprehensive literature search was performed using the 62 electronic databases of PubMed, MEDLINE, CINAHL, Web of Science, Cochrane 63 Reviews, and Cochrane Central Register of Controlled Trials. For each database, the 64 search range was set from the time of its installation to June 2020. A manual search was 65 performed using the citation list of papers as needed. 66 The database key words used were "osteoporosis," "osteopenia," "menopause," "high intensity," "loading," "exercise," "resistance," "strength," "heavy weight," "training," 67 68 and "weightlifting," and we combined these in order to execute the search (details have 69 been described in the Online Resource). This study was registered in the International 70 Prospective Register of Systematic Reviews (Registration number, CRD42020188034). 71 Study eligibility 72 The eligibility of a paper was determined in the following manner. Subjects had to be 73 community-dwelling patients diagnosed with primary osteoporosis or osteopenia 74 (diagnostic criteria: osteopenia, T-score < -1.0; osteoporosis, T-score < -2.5) [19], for 75 whom the intervention was HLRT. The definition of HLRT included multi-joint

76	exercises needed to improve muscle strength, and a single menu of exercises had to
77	include 1–3 sets of 8–12 repetitions of a load with more than 60–70% of one repetition
78	maximum (RM) [11, 20]. The intervention period had to be three or more months for
79	the effect of resistance training on bone metabolism to become evident [21]. We did not
80	specify the presence or details of the intervention in the control group. The outcome was
81	set as the BMD of the femur and lumbar spine, which accurately reflects the bone
82	fracture risk [22]. We only examined RCTs. Manuscripts and meeting minutes in
83	languages other than English were excluded from the analysis.
84	Data extraction
85	The papers were chosen by two authors according to the eligibility criteria. Each
86	author checked and screened the abstract and main text of each paper, and the opinion
87	of a third person was considered for papers that the two authors disagreed on. We
88	decided whether to use the papers after discussions.
89	If a study consisted of three groups, we chose the comparisons most relevant to our
90	research question to avoid participants from the same group participating twice.
91	The papers adopted were described in terms of their authors, basic information of the
92	subjects, what was done for the intervention and the control group, intervention period,
93	measurement device and area of interest, frequency of exercise, and adverse events.

Risk of bias assessment

95	Two authors independently evaluated the bias risk for each study. Bias risk was
96	evaluated according to the Revised Cochrane risk of bias tool for randomized trials
97	(RoB 2) [23]. Five items were evaluated: (1) bias arising from the randomization
98	process, (2) bias due to deviations from intended interventions, (3) bias due to missing
99	outcome data, (4) bias in the measurement of the outcome, and (5) bias in the selection
100	of the reported result. Each item was evaluated as low risk, some concerns, or high risk.
101	The final result of the overall risk-of-bias judgment was determined through discussions
102	among the authors.
103	Meta-analysis
104	Meta-analysis was performed using Review Manager (version 5.4), and forest plots
105	were created. The primary outcome was the BMD of the lumbar spine, total hip, or
106	femoral neck, and the post-intervention mean differences and standard deviations for the
107	HLRT and control groups were extracted from the data summary presented in each
108	study. If a paper did not mention BMD results before and after the intervention and
109	standard deviations, we contacted the authors of the paper by e-mail. When there was no
110	description of the mean difference in the manuscript of a paper, we calculated it based
111	on the information presented in the manuscript. Furthermore, where there was only

112	mention of the 95% confidence interval (CI) and no description of the standard
113	deviation, we used a conversion formula to calculate the standard deviation. If a paper
114	lacked a standard deviation of the mean difference, we calculated it according to the
115	procedures in the Cochrane handbook [24]. Harding et al. [17] reported the changes and
116	standard deviation of changes. We calculated the correlation coefficient from this study
117	(r=0.99), and we calculated the standard deviation of changes in the intervention and
118	control groups using the pre-intervention and post-intervention standard deviations.
119	Taking into consideration that the changes in BMD were represented in different units,
120	such as the actual value or percentages, and that there were differences in the devices
121	used to evaluate BMD, the data used for analysis were the standardized mean difference
122	(SMD) of the BMD before and after the intervention. The data were converted to SMD
123	using the calculation tools on the Review Manager. The calculation formula is installed
124	on Statistical Algorithms in Review Manager 5.1 [25]. The effect was estimated using
125	the random-effects model, and all results were shown in terms of SMD and 95% CI.
126	The presence or absence of heterogeneity between studies was evaluated by the χ^2
127	test, using Cochran's Q-test. In addition, the extent of heterogeneity was evaluated using
128	I ² . An I ² value of 0–40% generally indicates an insignificant level of heterogeneity;
129	30-60% indicates "moderate heterogeneity"; 50-90% indicates "substantial

130 heterogeneity"; and 75–100% indicates "considerable heterogeneity" [25].

131	Furthermore, subgroup analysis was conducted to examine the consistency of the
132	results. Subgroup analysis was performed on the following parameters: mean age of the
133	intervention group (60 years or older: elderly, 60 years or younger: middle age), sex,
134	total sessions (grouped according to the median of the selected articles; 64 or more
135	sessions: high, 63 or fewer sessions: low), excluded high risk of bias, and the presence
136	or absence of exercise intervention in the control group. In addition, meta-regression
137	analysis was conducted to examine the effect of age, sex, total sessions, presence of
138	high risk of bias, and presence of exercise intervention in the control group on the
139	results, which were used as criteria for the subgroups. Meta-regression analysis was
140	performed using EZR [26]. In all analyses, the significance level was set at 5%.
141	Publication bias was evaluated visually from the funnel plot. Visual assessment of a
142	funnel plot is regarded as a common method for evaluating publication bias during
143	meta-analysis [27]. The funnel plots were created using EZR [26].
144	

147 **Results**

148 Fig. 1 shows a flow chart of the literature search. By screening the titles and abstracts 149 of the articles in the search results obtained from each database, we selected 106 articles 150 that fulfilled the eligibility criteria for this study. In addition, by screening the full text, we excluded a total of 97 articles because the subjects did not have primary 151 152 osteoporosis or osteopenia (n=59), the subjects overlapped (n=7), the method of 153 intervention was not HLRT (n=14), there was no control group (n=2), BMD was not a 154 studied outcome (n=13), or the study was not randomized (n=2). Finally, nine RCTs 155 were included in this study [14–17, 28–32]. 156 Table 1 summarizes the papers used for analysis. A total of 259 subjects (116 men and 143 women) were included in the intervention group and 236 subjects (88 men and 157 158 148 women) in the control group. The mean age of subjects ranged from 42.1 to 83.0 159 years. The intervention period ranged from 12 to 54 weeks. In six studies, exercise 160 interventions such as mild load resistance training, jump training, or agility training 161 were included for the control groups. In all studies, dual-energy X-ray 162 absorptiometry (DXA) was used to measure BMD. One of the studies had used 163 quantitative computed tomography along with DXA for the measurements. BMD 164 measurements of the lumbar spine, femoral neck, and total hip were obtained in eight,

165 seven, and seven studies, respectively.

166	Table 2 shows the evaluation of bias in the selected papers. Three papers were
167	evaluated as low risk, three papers as having some concerns, and three papers as at high
168	risk of bias. The factors that we considered to increase the risk of bias were the
169	unknown impact of dropouts and the uncertainty in outcome reporting. In addition,
170	there were many cases of dropouts in the high-risk papers, and we hypothesized that
171	these dropouts would have a large impact on the results.
172	Fig. 2 shows the results of the meta-analysis on HLRT and lumbar spine BMD. The
173	HLRT group had a greater increase in lumbar spine BMD than the control group
174	(SMD=1.40, 95% CI=0.68–2.12, p<0.001). There was also a very high degree of
175	heterogeneity (Q=67.16, p<0.001, I ² =90%).
176	Fig. 3 shows the results of the meta-analysis of HLRT and femur BMD. The HLRT
177	group had a greater increase in both the femoral neck BMD (SMD=0.86, 95%
178	CI=0.05–1.67, p=0.04) and total hip BMD (SMD=1.26, 95% CI=0.45–2.08, p=0.002)
179	than the control group. Both the femoral neck (Q=75.53, p<0.001, I^2 =92%) and the total
180	hip (Q=68.49, p<0.001, I^2 =91%) showed a high degree of heterogeneity in the results.
181	Fig. 4 shows the funnel plot. There was a horizontal asymmetry in the lumbar spine,
182	femoral neck, and total hip by visual assessment.

183	Table 3 shows the results of the subgroup and meta-regression analyses. For the
184	lumbar spine, the HLRT group showed a significant increase in BMD in all the
185	subgroups analyzed except for the only men group. The total sessions low group
186	showed no heterogeneity in the subgroup analysis in the lumbar spine. The other
187	analyses showed significant heterogeneity ($I^2=70-94\%$).
188	In the femoral neck, only the total sessions high group showed a statistically
189	significant increase in BMD. Subgroup analyses except for the total sessions low group
190	showed statistically significant heterogeneity ($I^2=86-98\%$).
191	In the total hip, only men group, elderly group, total sessions high group, and control
192	group with no exercise showed a significant effect of increasing BMD. Heterogeneity
193	was observed in all subgroups except for only men group ($I^2=68-96\%$).
194	The results of the meta-regression analysis showed that none of the factors were
195	significantly associated with the lumbar spine. For the femoral neck, both the total
196	sessions high and low groups showed significant associations (both p<0.001); for the
197	total hip, excluded high risk of bias (p=0.003) and total sessions high and low groups
198	(p=0.005) showed significant associations.
199	

200 Discussion

201 As a result of the systematic search focusing on HLRT, osteoporosis, and osteopenia, 202 we were able to extract nine RCTs involving 495 subjects. The results of the overall 203 analysis suggested that HLRT is effective for maintaining and improving the BMD of the lumbar spine and femur in patients with osteoporosis and osteopenia. 204 205 HLRT takes advantage of the property of bones to change in amount and strength 206 according to the magnitude of the strain [33, 34] in order to increase BMD through the 207 strain caused by high-resistance training. The results of this study showed that the 208 increase in BMD by HLRT also applies to actual osteopenia patients. Furthermore, 209 resistance training promotes the secretion of humoral factors, such as testosterone, growth hormones, insulin-like growth factor-1, and myokine interleukin-6 [35, 36]. It 210 211 has been shown that these humoral factors are related to bone metabolism [37], and the 212 activity of humoral factors brought about by muscle activity may explain the increase in 213 BMD resulting from HLRT that involves intense muscle activity. 214 The results of this study showed a high degree of heterogeneity regardless of the site 215 of BMD measurement, and caution should be exercised while interpreting the results. 216 For BMD of the lumbar spine, no statistically significant factors were extracted by 217 meta-regression analysis. Only the subgroup analysis of the lumbar spine in the only

218	women group showed a statistically significant BMD-increasing effect of HLRT and the
219	lowest heterogeneity. Analysis of the total hip in the only male group showed a
220	significant BMD-increasing effect and the absence of statistical heterogeneity. Although
221	the specific mechanism is unknown, a study of healthy elderly people who underwent
222	HLRT reported that despite not reaching the statistical significance, the male group
223	tended to have a greater increase in lumbar spine bone density than the female group
224	[38], and the variation in effect size may be influenced by gender differences.
225	As a factor of heterogeneity in our meta-analysis, the meta-regression analysis
226	showed that the statistically significant associations were observed for the total sessions
227	multiplied by the frequency and duration of interventions in the femoral neck and total
228	hip analysis. In postmenopausal women, a proportional relationship between the amount
229	of weight lifted and the increase in BMD over 1 year was found independently of
230	factors such as age, body size, and the presence of hormone therapy [39]. Therefore, it
231	is possible that the effect of HLRT on BMD is not only due to load quantity, but also
232	due to the effect of total sessions related to the amount of weight lifted, which may have
233	caused variation in the effect size and increase in the heterogeneity. In addition, the
234	amount of weight lifted in the lumbar spine group was higher due to the addition of
235	HLRT for the upper extremities and trunk, suggesting that total sessions had less effect

236	on the heterogeneity of results than that in the lower extremity joints. The high risk of
237	bias was also statistically significantly associated with heterogeneity in the total hip
238	results. Papers with a high risk of bias had results with point estimates of effect sizes
239	and CIs that were in the extremely positive direction, which may have resulted in high
240	heterogeneity due to the overestimation of the effects of HLRT. Considering the lack of
241	robustness in the subgroup analyses of both femoral neck and total hip, and the lack of
242	trend in the effects of exercise interventions on femoral BMD in meta-analyses
243	examining the effects of exercise intervention in postmenopausal women [5-8], it is
244	difficult to clearly state the effect of HLRT on increasing femoral BMD in this study.
245	In terms of safety, although there were some mild adverse events, such as muscle pain,
246	similar to previous meta-analyses on resistance training in post-menopausal women
247	[6-8], no serious adverse events, such as bone fractures, were found in this study. A
248	study that tested the safety of HLRT in women with low BMD reported that there were
249	no adverse events, and subject compliance with the exercise intervention was favorable
250	[40]. Furthermore, no adverse events were reported in the study that examined the
251	performance of HLRT on patients who had suffered proximal femoral fractures [41].
252	HLRT is regarded as safe even compared to high impact jumping that involves a lot of
253	joint load. However, many papers analyzed in our study involved guidance from a

254	specialist provided with the intervention which suggests that the intervention from a
255	specialist would be needed for clinically safe and effective implementation of HLRT.
256	Since all papers in this study that simultaneously evaluated BMD and the effect of the
257	intervention on muscle strength [14, 16, 17, 31, 32] showed improvements in muscle
258	strength and motor function, HLRT may become a useful non-pharmacotherapeutic
259	intervention for preventing fractures in osteopenia patients with reduced muscle strength
260	as long as safety can be ensured.
261	This study has several limitations. First, although we selected papers in which
262	subjects were clearly determined to have osteoporosis or osteopenia, we may have
263	excluded papers on patients exhibiting clinical signs of osteoporosis, and there may be a
264	selection bias involved in the study. Second, the high heterogeneity of the results reduce
265	the ability to generalize the results. The present study suggests that total sessions and a
266	high risk of bias are associated with heterogeneity, and future analyses should exclude
267	the effects of these factors. The high degree of heterogeneity in this study may also be
268	due to the fact that the outcome is a continuous variable. In general, the degree of
269	heterogeneity tends to be higher in analyses where the outcome is a continuous variable
270	[42]. Since meta-analyses on similar topics have shown a high degree of heterogeneity
271	[6-8, 43], it may be the nature of such studies to be highly heterogeneous. In addition,

272	the funnel plots in this study showed horizontal asymmetry in all sites where BMD was
273	assessed, and publication bias could not be excluded. To eliminate these limitations, it
274	would be desirable to include a larger number of RCTs with a low risk of bias in the
275	analysis.
276	In conclusion, as a result of the meta-analysis, we found that HLRT led to significant
277	increase in the BMD mainly of the lumbar spine in patients with osteoporosis and
278	osteopenia. With safety assurances and simultaneous improvements in motor function,
279	HLRT may become an effective non-pharmacotherapeutic intervention to increase BMD.
280	However, this meta-analysis has a high degree of heterogeneity and publication bias. It
281	would be necessary to continue accumulating RCTs with a low risk of bias and
282	incorporate their data into the analysis to address the limitations of heterogeneity and
283	publication bias and generalize our findings.
284	
285	Author Contributions
286	All authors contributed to the study conception and design. Material preparation, data
287	collection, and analysis were performed by YK, TW, and HH. HN and MO contributed
288	to the analysis and interpretation of the data in the study. The first draft of the
289	manuscript was written by YK, and all authors commented on previous versions of the

290 manuscript. All authors read and approved the final manuscript.

292	Acknowledgments
-----	-----------------

- 293 We are grateful to Ryoko Ikehara for providing secretarial assistance.
- 294 This work was supported by Grants-in-Aid from the Ministry of Health, Labour and
- 295 Welfare (subject no.:19FA1014) and received funding from Tottori University.

Conflicts of interest

309 **References**

310	1.	NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis,
311	and Th	erapy (2001) Osteoporosis prevention, diagnosis, and therapy. JAMA
312	285:78	5–795
313	2.	Hernlund E, Svedbom A, Ivergård M, Compston J, Cooper C, Stenmark J,
314	McClo	skey EV, Jönsson B, Kanis JA (2013) Osteoporosis in the European Union:
315	medica	l management, epidemiology and economic burden. A report prepared in
316	collabo	pration with the International Osteoporosis Foundation (IOF) and the European
317	Federat	tion of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos 8:136
318	3.	Odén A, McCloskey EV, Kanis JA, Harvey NC, Johansson H (2015) Burden of
319	high fra	acture probability worldwide: secular increases 2010-2040. Osteoporos Int
320	26:224	3–2248
321	4.	Compston J, Cooper A, Cooper C, Gittoes N, Gregson C, Harvey N, Hope S,
322	Kanis J	A, McCloskey EV, Poole KES, Reid DM, Selby P, Thompson F, Thurston A,
323	Vine N	(2017) UK clinical guideline for the prevention and treatment of osteoporosis.
324	Arch O	osteoporos 12:43
325	5.	Howe TE, Shea B, Dawson LJ, Downie F, Murray A, Ross C, Harbour RT,
326	Caldwe	ell LM, Creed G (2011) Exercise for preventing and treating osteoporosis in

327 postmenopausal women. Cochrane Database Syst Rev 6:CD000333

328	6. Zhao R, Zhao M, Xu Z (2015) The effects of differing resistance training
329	modes on the preservation of bone mineral density in postmenopausal women: a
330	meta-analysis. Osteoporos Int 26:1605–1618
331	7. Shojaa M, von Stengel S, Kohl M, Schoene D, Kemmler W (2020) Effects of
332	dynamic resistance exercise on bone mineral density in postmenopausal women: a
333	systematic review and meta-analysis with special emphasis on exercise parameters.
334	Osteoporos Int 31:1427–1444
335	8. Martyn-St James M, Carroll S (2006) High-intensity resistance training and
336	postmenopausal bone loss: a meta-analysis. Osteoporos Int 17:1225-1240
337	9. Raymond MJ, Bramley-Tzerefos RE, Jeffs KJ, Winter A, Holland AE (2013)
338	Systematic review of high-intensity progressive resistance strength training of the lower
339	limb compared with other intensities of strength training in older adults. Arch Phys Med
340	Rehabil 94:1458–1472
341	10. Chodzko-Zajko WJ, Proctor DN, Fiatarone Singh MA, Minson CT, Nigg CR,
342	Salem GJ, Skinner JS (2009) American College of Sports Medicine position stand.
343	Exercise and physical activity for older adults. Med Sci Sports Exerc 41:1510-1530
344	11. American College of Sports Medicine (2009) American College of Sports

- 345 Medicine position stand. Progression models in resistance training for healthy adults.
- 346 Med Sci Sports Exerc 41:687–708
- 12. Alajlouni D, Bliuc D, Tran T, Eisman JA, Nguyen TV, Center JR (2020)
- 348 Decline in muscle strength and performance predicts fracture risk in elderly women and
- 349 men. J Clin Endocrinol Metab 105:dgaa414
- 350 13. Wright NC, Looker AC, Saag KG, Curtis JR, Delzell ES, Randall S,
- 351 Dawson-Hughes B (2014) The recent prevalence of osteoporosis and low bone mass in
- 352 the United States based on bone mineral density at the femoral neck or lumbar spine. J
- 353 Bone Miner Res 29:2520–2526
- 14. Mosti MP, Kaehler N, Stunes AK, Hoff J, Syversen U (2013) Maximal strength
- 355 training in postmenopausal women with osteoporosis or osteopenia. J Strength Cond
- 356 Res 27:2879–2886
- 357 15. Watson SL, Weeks BK, Weis LJ, Harding AT, Horan SA, Beck BR (2018)
- 358 High-intensity resistance and impact training improves bone mineral density and
- 359 physical function in postmenopausal women with osteopenia and osteoporosis: the
- 360 LIFTMOR randomized controlled trial. J Bone Miner Res 33:211–220
- 361 16. Hinton PS, Nigh P, Thyfault J (2015) Effectiveness of resistance training or
- 362 jumping-exercise to increase bone mineral density in men with low bone mass: a

363 12-month randomized, clinical trial. Bone 79:203–212

364	17. Harding AT, Weeks BK, Lambert C, Watson SL, Weis LJ, Beck BR (2020) A
365	comparison of bone-targeted exercise strategies to reduce fracture risk in middle-aged
366	and older men with osteopenia and osteoporosis: LIFTMOR-M semi-randomized
367	controlled trial. J Bone Miner Res 35:1404–1414
368	18. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP,
369	Clarke M, Devereaux PJ, Kleijnen J, Moher D (2009) The PRISMA statement for
370	reporting systematic reviews and meta-analyses of studies that evaluate health care
371	interventions: explanation and elaboration. Ann Intern Med 151:W65-94
372	19. Kanis JA, Melton LJ, 3rd, Christiansen C, Johnston CC, Khaltaev N (1994)
373	The diagnosis of osteoporosis. J Bone Miner Res 9:1137–1141
374	20. Schoenfeld BJ, Grgic J, Ogborn D, Krieger JW (2017) Strength and
375	hypertrophy adaptations between low- vs. high-load resistance training: a systematic

- 376 review and meta-analysis. J Strength Cond Res 31:3508–3523
- 377 21. Pasqualini L, Ministrini S, Lombardini R, Bagaglia F, Paltriccia R, Pippi R,
- 378 Collebrusco L, Reginato E, Sbroma Tomaro E, Marini E, D'Abbondanza M, Scarponi
- 379 AM, De Feo P, Pirro M (2019) Effects of a 3-month weight-bearing and resistance
- 380 exercise training on circulating osteogenic cells and bone formation markers in

381 postmenopausal women with low bone mass. Osteoporos Int 30:797–80	06
---	----

382	22. Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of
383	bone mineral density predict occurrence of osteoporotic fractures. BMJ 312:1254-1259
384	23. Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, et al. (2019) RoB
385	2: a revised tool for assessing risk of bias in randomised trials. BMJ 366:14898
386	24. Higgins JPT, Li T, Deeks JJ. Chapter 6: Choosing effect measures and
387	computing estimates of effect. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li
388	T, Page MJ, Welch VA (eds) Cochrane Handbook for Systematic Reviews of
389	Interventions version 6.1 (updated September 2020). Cochrane, 2020. Available from
390	https://www.training.cochrane.org/handbook.
391	25. Deeks JJ, Higgins JPT, Altman DG. Chapter 10: Analysing data and
392	undertaking meta-analyses. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T,
393	Page MJ, Welch VA (editors) Cochrane Handbook for Systematic Reviews of
394	Interventions version 6.1 (updated September 2020). Cochrane, 2020. Available from
395	https://www.training.cochrane.org/handbook.
396	26. Kanda Y (2013) Investigation of the freely available easy-to-use software 'EZR'
397	for medical statistics. Bone Marrow Transplant 48:452-458
398	27. Page MJ, Higgins JPT, Sterne JAC. Chapter 13: Assessing risk of bias due to

- 399 missing results in a synthesis. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T,
- 400 Page MJ, Welch VA (eds) Cochrane Handbook for Systematic Reviews of Interventions
- 401 version 6.1 (updated September 2020). Cochrane, 2020. Available from
- 402 https://www.training.cochrane.org/handbook.
- 403 28. Villareal DT, Steger-May K, Schechtman KB, Yarasheski KE, Brown M,
- 404 Sinacore DR, Binder EF (2004) Effects of exercise training on bone mineral density in
- 405 frail older women and men: a randomised controlled trial. Age Ageing 33:309–312
- 406 29. Liu-Ambrose TY, Khan KM, Eng JJ, Heinonen A, McKay HA (2004) Both
- 407 resistance and agility training increase cortical bone density in 75- to 85-year-old
- 408 women with low bone mass: a 6-month randomized controlled trial. J Clin Densitom
- 409 7:390-398
- 410 30. Basat H, Esmaeilzadeh S, Eskiyurt N (2013) The effects of strengthening and
- 411 high-impact exercises on bone metabolism and quality of life in postmenopausal
- 412 women: a randomized controlled trial. J Back Musculoskelet Rehabil 26:427–435
- 413 31. Borba-Pinheiro CJ, Dantas EH, Vale RG, Drigo AJ, Carvalho MC, Tonini T,
- 414 Meza EI, Figueiredo NM (2016) Resistance training programs on bone related variables
- 415 and functional independence of postmenopausal women in pharmacological treatment:
- 416 A randomized controlled trial. Arch Gerontol Geriatr 65:36–44

417	32. Kemmler W, Kohl M, Fröhlich M, Jakob F, Engelke K, von Stengel S, Schoene
418	D (2020) Effects of high-intensity resistance training on osteopenia and sarcopenia
419	parameters in older men with osteosarcopenia-one-year results of the randomized
420	controlled Franconian Osteopenia and Sarcopenia Trial (FrOST). J Bone Miner Res
421	35:1634–1644
422	33. Frost HM (2003) Bone's mechanostat: a 2003 update. Anat Rec
423	275A:1081–1101
424	34. Hsieh YF, Turner CH (2001) Effects of loading frequency on mechanically
425	induced bone formation. J Bone Miner Res 16:918-924
426	35. Yeo N, Woo J, Shin KO, Park JY, Kang S (2012) The effects of different
427	exercise intensity on myokine and angiogenesis factors. J Sports Med Phys Fitness
428	52:448-454
429	36. Schroeder ET, Villanueva M, West DD, Phillips SM (2013) Are acute
430	post-resistance exercise increases in testosterone, growth hormone, and IGF-1 necessary
431	to stimulate skeletal muscle anabolism and hypertrophy? Med Sci Sports Exerc
432	45:2044–2051
433	37. Tagliaferri C, Wittrant Y, Davicco MJ, Walrand S, Coxam V (2015) Muscle and
434	bone, two interconnected tissues. Ageing Res Rev 21:55-70

435	38.	Bemben DA, Bemben MG (2011) Dose-response effect of 40 weeks of
436	resistan	ce training on bone mineral density in older adults. Osteoporos Int 22:179–186
437	39.	Cussler EC, Lohman TG, Going SB, Houtkooper LB, Metcalfe LL,
438	Flint-W	agner HG, Harris RB, Teixeira PJ (2003) Weight lifted in strength training
439	predicts	bone change in postmenopausal women. Med Sci Sports Exerc 35:10-17
440	40.	Watson SL, Weeks BK, Weis LJ, Horan SA, Beck BR (2015) Heavy resistance
441	training	is safe and improves bone, function, and stature in postmenopausal women with
442	low to v	very low bone mass: novel early findings from the LIFTMOR trial. Osteoporos
443	Int 26:2	889–2894
444	41.	Singh NA, Quine S, Clemson LM, Williams EJ, Williamson DA, Stavrinos TM,
445	Grady J	N, Perry TJ, Lloyd BD, Smith EU, Singh MA (2012) Effects of high-intensity
446	progress	sive resistance training and targeted multidisciplinary treatment of frailty on
447	mortalit	y and nursing home admissions after hip fracture: a randomized controlled trial.
448	J Am M	led Dir Assoc 13:24–30
449	42.	Alba AC, Alexander PE, Chang J, MacIsaac J, DeFry S, Guyatt GH (2016)
450	High sta	atistical heterogeneity is more frequent in meta-analysis of continuous than
451	binary c	outcomes. J Clin Epidemiol 70:129–135
452	43.	Martyn-St James M, Carroll S (2010) Effects of different impact exercise

- 453 modalities on bone mineral density in premenopausal women: a meta-analysis. J Bone
- 454 Miner Metab 28:251–267

456	Figure	Legends
-----	--------	---------

- 457 Fig. 1 Flow diagram of the search process
- 458
- 459 Fig. 2 Forest plot of meta-analysis results for the lumbar spine
- 460 The data are shown as pooled standard mean difference (SMD) with 95% confidence
- 461 interval (CI) for changes in the intervention and control groups.
- 462

463 Fig. 3 Forest plot of meta-analysis results for the femoral neck (a) and for the total hip

- 464 (b)
- 465 The data are shown as pooled standard mean difference (SMD) with 95% confidence
- 466 interval (CI) for changes in intervention and control groups.
- 467
- 468 Fig. 4 Funnel plot of meta-analysis results for the lumbar spine (a), for the femoral neck
- 469 (b), and for the total hip (c).
- 470 The vertical axis represents the standard error and the horizontal axis represents the
- 471 standard mean difference. The results of each study are plotted.

Fig. 1 Flow diagram of the search process

Fig. 2 Forest plot of meta-analysis results for the lumbar spine

The data are shown as pooled standard mean difference (SMD) with 95%

confidence interval (CI) for changes in the intervention and control groups.

	Interve	ention group		Control group			Std. Mean Difference			Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	Year	IV, Random, 95% Cl
Liu-Ambrose	0.001	0.021	29	-0.006	0.019	33	15.4%	-0.25 [-0.75, 0.25]	2004	
Villareal	0.01	0.028	65	-0.04	0.03	47	15.6%	1.72 [1.28, 2.16]	2004	-
Mosti	0.005	0.009	8	-0.007	0.008	8	12.5%	1.33 [0.22, 2.45]	2013	_ _
Hinton	0.008	0.014	19	-0.005	0.017	19	14.8%	0.82 [0.15, 1.48]	2015	
Borba-Pinheiro	0.124	0.03	20	-0.005	0.02	16	11.3%	4.84 [3.48, 6.19]	2016	
Kemmler	0	0.013	21	-0.01	0.014	22	15.0%	0.73 [0.11, 1.35]	2018	
Harding 0.019 0.0		0.006	34	-0.015	0.008	26	15.4%	0.57 [0.05, 1.09]	2020	
Total (95% Cl) 196 171 100.0% 1.26 [0.45, 2.08]						◆				
Heterogeniety: Tau ² = 1.05; Chi ² = 68.49, df = 6 (P< 0.00001); l ² = 91%					l ² = 91	%		_		
Test for overall effect: $Z = 3.03$ (P = 0.002)										Control group Intervention group

Fig. 3 Forest plot of meta-analysis results for the femoral neck (a) and for the total hip (b)

The data are shown as pooled standard mean difference (SMD) with 95% confidence interval

(CI) for changes in intervention and control groups.

Fig. 4 Funnel plot of meta-analysis results for the lumbar spine (a), for the femoral neck (b), and for the total hip (c).

The vertical axis represents the standard error and the horizontal axis represents the

standard mean difference. The results of each study are plotted.

First	Subjects	Basic	Details of intervention (menu,	Details of	Intervention	Measurement	Results	Exercise	Adverse events
author,		information of	frequency)	intervention in	period	device and		completion	
year		subjects		CG	(weeks)	area of interest		rate	
Watson	Women	IG: 49	Intensity: A load of 5 sets of 5	Low intensity	32	DXA	In the CG,	IG: 87.8%	One case of mild
2018	> 58	subjects,	repetitions of 80% of one RM	resistance,		Lumbar spine	lumbar spine,	CG: 82.7%	lower back pain in
	years old	65.5±5 years	adjusted to 85% of one RM	balance, and		Femoral neck	and femur		the IG.
	(T-	old	Exercises: Deadlift, overhead	mobility			BMD		
	score <	CG: 52	press, and back squat	training at	at		decreased,		
	-1.0)	subjects, 65±5	Frequency: 30-minute	home			whereas in the		
		years old	sessions, twice a week	30-minute			IG, lumbar		
				sessions, twice	ce		spine, and		
				a week			femoral neck		
							BMD increased.		
							The IG had		
							increased BMD		
							in all sites		
							measured.		

Table 1 Characteristics of included studies

Borba-	Women	IG; 20	Intensity: Gradual load-	No exercise	52	DXA	The effect level	Not	Not mentioned.
Pinheiro	> 50	subjects,	elevation from 60% to 90% of	intervention		Lumbar spine	was	mentioned.	
2016	years old	56.3±5.2 years	one RM			Femoral neck	significantly		
	(T-	old	Exercises: Leg press using			Total hip	larger than that		
	score <	CG: 16	machines, knee extension,				of the CG.		
	-1.0)	subjects,	plantar ankle flexion, hip						
	Receivin	55.3±6.8 years	abduction, elbow flexion and						
	g	old	extension, shoulder abduction						
	treatment		Frequency: 60-minute						
	with		sessions, three times a week						
	Alendron								
	ate or								
	vitamin								
	D3								
Kemmler	Men >	IG: 21	Intensity: At maximum effort,	No exercise	54	QCT	Lumbar BMD	95% of the	There was a report
2020	72 years	subjects,	either 5–7 or 8–10 repetitions	intervention		Lumbar spine	was maintained	IG	of delayed onset
	old (T-	77.8±3.6 years	Exercises: Leg press,	Other: Taking		DXA	in the IG but	completed	muscle soreness.
	score <	old	extension, curl, adduction,	protein,		Total hip	was	the exercise	
	-1.0)	CG: 22	abduction, latissimus front	vitamin D			significantly	program.	
		subjects,	pulley, rowing, back	supplements			reduced in the		
		79.2±4.7 years	extension, inverse fly, bench	and calcium			CG. There was		
		old	press, military press, lateral	supplements			no significant		
			raise, butterfly, crunch				change in total		

Frequency: Twice a week
Other: Taking protein, vitamin
D supplements and calcium
supplements

hip BMD in both groups.

Mosti	Women	IG: 8 subjects,	Intensity: Two sets of 8-12	Exercise for	12	DXA	No significant	Not	Not mentioned.
2013	< 75	61.9±5.0 years	repetitions at approximately	osteoporosis		Lumbar spine	increase in	mentioned.	
	years old	old	50% of one RM, four sets of	in accordance		Femoral neck	BMD was		
	(T-score	CG: 8	3-5 repetitions at 85-90% of	with		Total hip	observed in the		
	between	subjects,	one RM	guidelines			IG and CG.		
	-1.5 and	66.7±7.4 years	Exercises: Squats with						
	-4.0)	old	machine						
			Frequency: Three times a						
			week						
Hinton	Men 25-	IG: 19	Intensity: Gradual load	Various jump	48	DXA	Lumbar BMD	IG: 100%	There were no
2015	60 years	subjects,	elevation from 50% to 90%	exercises with		Lumbar spine	was	CG: 100%	adverse events.
	old (T-	45.5±9.6 years	one RM	varying		Total hip	significantly	There were	
	score	old	Exercises: Squats, bent-over	intensities and			increased in	dropouts	
	between	CG: 19	rows, modified deadlifts,	directions			both groups.	unrelated to	
	-1.0 and	subjects,	military presses, lunges, calf	Other: Taking			Total hip BMD	intervention	
	-2.5)		raise	calcium and			was		

	42.1±10.6	Frequency: Twice a week	vitamin D			significantly	(IG: 3, CG:	
	years old	Other: Taking calcium and	supplements			increased only	2)	
		vitamin D supplements				in the IG.		
Men >	IG: 34	Intensity: 5 sets of 5	No exercise	32	DXA	In the IG, BMD	The	Two cases of mild
45 years	subjects,	repetitions at 80-85% or	intervention		Lumbar spine	increased	participatio	musculoskeletal
old (T-	64.9±8.6 years	higher of one RM			Femoral neck	significantly in	n rate of IG	pain during
score <	old	Exercises: Deadlifts, squats,			Total hip	all sites, and the	was 77.8%,	intervention.
-1.0)	CG: 26	over-head press				rates of change	with 3	
	subjects,	Frequency: 30-minute				were greater	subjects	
	67.4±6.3 years	sessions, twice a week				than in the CG.	dropping	
	old						out for	
							reasons	
							unrelated to	
							the	
							intervention	

.

Harding 2020

Liu-	Women	IG: 32	Intensity: Gradual load	Agility	25	DXA	There were no	94%	There were 10 cases
Ambrose	75–85	subjects,	elevation from 10 to 15	training		Lumbar spine	significant	completed	of mild
2004	years old	79.6±2.1 years	repetitions at 50-60% of one			Femoral neck	changes in the	the	musculoskeletal
	diagnose	old	RM to 6-8 reps at 75-85% of			Total hip	BMD in both	intervention	troubles such ass
	d with	CG: 34	one RM				groups.	The	muscle pain during
	osteopor	subjects,	Exercises: Biceps curls,					exercise	the intervention.
	osis or	78.9±2.8 years	triceps extension, seated row,					participatio	
	osteopeni	old	latissimus dorsi pull downs,					n rate in IG	
	a		mini-squats, mini-lunges,					was 85%.	
			hamstring curls, calf raises,						
			and gluteus maximus						
			extensions						
			Frequency: 50-minute						
			sessions, twice a week						
Basat	Post-	IG: 11	Intensity: A 10 RM load	Jump training	24	DXA	In both groups,	The	Not mentioned.
2013	menopau	subjects,	according to the ACSM	Other: Taking		Lumbar spine	the lumbar and	exercise	
	sal	55.9±4.9 years	guidelines	vitamin D and		Femoral neck	femoral neck	participatio	
	women	old	Exercises: Trunk flexion-	calcium			BMD increased.	n rate of the	
	40–70	CG: 12	extension, hip abduction-	supplements			There was no	analyzed	
	years old	subjects,	adduction, extension, flexion,				difference	subjects	
	(T-score	55.6±2.9 years	knee extension-flexion, push-				between groups	was 60% or	
	between	old	ups				in terms of the	more.	

-1.0 an	d
-2.5)	

Frequency: 60-minute session, once a week Other: Taking vitamin D and calcium supplements

amount of change.

DXA Villareal IG: 65 Intensity: 1–2 sets of 6–8 Stretching and 36 Compared to 24% of subjects Men and Deemed 2004 subjects, repetitions of each exercise Lumbar spine the CG, the dropped out due to women > balance favorable, 83.0±4.0 years were completed at 65-75% of Femoral neck BMD was with 94% medical issues 78 years training old old, women one RM. This progressed to 3 Other: Taking of analyzed (relation to the maintained in 52% (mean Tsets of 8–12 repetitions done vitamin D and the IG, but it subjects intervention is at 85-100% of one RM. complying score: CG: 47 calcium was not a unknown). -1.6) significant with subjects, Exercises: Leg press, knee supplements 83.0±4.0 years extension, seated row, upright change. exercise. osteopeni a: 50%; old, women row, bench press, biceps curl 55% osteopeni and triceps extension. Frequency: Mean 2.2 sessions c: per week approx. 30% Other: Taking vitamin D and calcium supplements (Determi ned to correspo

	nd to
	inclusion
	criteria
	based on
	subject
	data,
	despite
	there
	being no
	descripti
	on in
	text)
1	IG, intervention group; CG, control group; RM, repetition maximal; DXA, dual X-ray absorptiometry; QCT, Quantitative Computed

2 Tomography; ACSM, American College of Sports Medicine

Table 2 Assessment of risk of bias for included studies

First author	Risk of bias	Risk of bias	Risk of bias due to	Risk of bias due to	Risk of bias in	Risk of bias in	Overall risk of	Comments
name, year	arising from the	due to	deviations from the	missing outcome	measurement	selection of the	bias judgement	
	randomization	deviations from	intended interventions	data	of the outcome	reported result		
	process	the intended	(effect adhering to					
		interventions	intervention).					
		(effect of						
		assignment to						
		intervention).						
Watson 2018	low risk	low risk	low risk	low risk	low risk	low risk	low risk	No particular problem
Mosti 2013	some concerns	some concerns	some concerns	some concerns	low risk	some concerns	high risk	The method of randomization and the effect of dropout cases in the control group are unclear.
Borba- Pinheiro 2016	some concerns	some concerns	some concerns	some concerns	low risk	some concerns	high risk	The method of randomization and the effect of dropout cases in

								the control group are unclear.
Hinton 2015	low risk	low risk	low risk	low risk	low risk	some concerns	some concerns	The consistency between the pre- specified outcome and the outcome described in the paper is unclear.
Harding 2020	low risk	low risk	low risk	low risk	low risk	low risk	low risk	No particular problem
Liu- Ambrose 2004	low risk	some concerns	low risk	some concerns	low risk	some concerns	some concerns	There is a discrepancy between the number of cases with intervention and the number of cases with outcome measures.

Kemmler 2020	low risk	low risk	low risk	low risk	low risk	low risk	low risk	No particular problem
Basat 2013	low risk	some concerns	some concerns	some concerns	low risk	some concerns	some concerns	The effect of dropout cases on the results and the appropriateness of the sample size are unknown.
Villareal 2004	low risk	high risk	high risk	high risk	low risk	some concerns	high risk	Too many dropouts in the intervention group, likely affecting the results

	Study number	Number of	SMD	P-value for	Cochrane Q test	$I^{2}(0/)$	P-value for	
	(included studies)	subjects	(95% CI)	overall effect	(P-value)	1- (%)	meta-regression	
Excluded high r	risk of bias							
T. 1 '	5	IG:128	1.62	D <0.001	56.60	02	0.500	
Lumbar spine	([15], [16], [17], [30], [32])	CG:122	(0.46–2.78)	P<0.001	(P<0.001)	93	0.509	
F 1 1	4	IG:117	0.00 (0.51 1.00)	D 0 40	25.04	00	0.110	
Femoral neck	([15],[17][29],[30])	CG:114	0.28 (-0.51–1.08)	P=0.48	(P<0.001)	88	0.119	
Total hip	4	IG:103		D	9.39	<u>()</u>	0.002	
	([16],[17],[29],[32])	CG:100	0.44 (-0.06–0.95)	P=0.09	(P=0.02)	68	0.003	
Only women								
	4	IG:82	1.33	P<0.001	10.00	70	0.420	
Lumbar spine	([14], [15], [30], [31])	CG:79	(0.63–2.03)		(P=0.02)	/0	0.439	
Г 1 1	5	IG:111	1.11	D 0.00	62.05	0.4	0.457	
Femoral neck	([14], [15], [29], [30], [31])	CG:112	(-0.15–2.37)	P=0.08	(P<0.001)	94	0.457	
T (11)	3	IG:57	1.92	D 0 10	50.10		0.070	
Total hip	([14],[29], [31])	CG:57	(-0.86–4.70)	P=0.18	(P<0.001)	96	0.273	
Only men								
T 1 '	3	IG:74	1.86	D 0.00	48.67		0.420	
Lumbar spine	([16], [17],[32])	CG:67	(-0.21–3.93)	P=0.08	(P<0.001)	96	0.439	
T 1 1	1	IG:34	-0.16	D 0 52	NT		0.455	
Femoral neck	([17])	CG:26	(-0.68–0.35)	P=0.53	Not applicable	Not applicable	0.457	

Table 3 Summary of meta–analysis of subgroups and meta-regression

Total hin	3	IG:74	0.68	D <0.001	0.36	0	0 272	
Total hip	([16], [17], [32])	CG:67	(0.34–1.02)	P<0.001	(P=0.84)	0	0.273	
Elderly								
Lymborging	5	IG:171	1.70	D-0.002	56.51	02	0.859	
Lumbar spine	([14], [15], [17], [28], [32])	CG:146	(0.65–2.76)	P=0.002	(P<0.001)	93		
Formaral moals	5	IG:179	0.36	D -0.21	35.75	80	0 1 2 6	
remoral neck	([14], [15], [17], [28], [29])	CG:157	(-0.34–1.06)	P=0.31	(P<0.001)	09	0.136	
Total hin	5	IG:157	0.80	P-0.04	35.32	80	0 373	
Total hip	([14], [17], [28], [29], [32])	CG:136	(0.03 - 1.57)	1-0.04	(P<0.001)	07	0.375	
Middle aged								
Lumbar spine	3	IG:50	0.90	P=0.03	7.04	72	0.859	
	([16], [30],[31])	CG:47	(0.09–1.72)	1-0.05	(P=0.03)	12	0.059	
Femoral neck	2	IG:31	2.66	P=0.26	32.70	07	0 136	
I CHIOTAI HECK	([30],[31])	CG:28	(-2.00–7.32)	1-0.20	(P<0.001)	21	0.150	
Total hin	2	IG:39	2.78	D -0 17	27.29	96	0 373	
Total hip	([16],[31])	CG:35	(-1.16–6.72)	1-0.17	(P<0.001)	30	0.575	
Total sessions h	ligh							
Lumber spine	6	IG:202	1.63	D-0.001	63.95	02	0.022	
Lunioar spine	([15],[16],[17],[28][31],[32])	CG:173	(0.75–2.52)	F<0.001	(P<0.001)	92	0.932	
Formaral mode	4	IG:162	1.59	D-0.00 8	53.31	04	~0.001	
Femoral neck	([15], [17], [28], [31])	CG:132	(0.42–2.76)	F-0.008	(P<0.001)	94	<0.001	
Total hip	5	IG:159	1.56	D -0.001	42.24	01	0.005	
	([16], [17], [28], [31], [32])	CG:130	(0.65–2.47)	r=0.001	(P<0.001)	71	0.005	

Total sessions low							
Lumbar spine	2	IG:19	0.65	P=0.05	0.02	0	0.932
	([14],[30])	CG:20	(0.00–1.30)		(P=0.89)	0	
Femoral neck	3	IG:48	-0.14	P=0.47	1.60	0	<0.001
	([14], [29],[30])	CG:53	(-0.54–0.25)		(P=0.45)	0	<0.001
Total hip	2	IG:37	0.46	P=0.56	6.42	84	0.005
	([14], [29])	CG:41	(-1.08–2.00)		(P=0.01)	64	0.005
Control group with exercise intervention							
Lumbar spine	5	IG:146	0.92	P=0.003	19.38	70	0.061
	([14], [15], [16], [28], [30])	CG:129	(0.30–1.53)		(P<0.001)	19	0.001
Femoral neck	5	IG:156	0.47	P=0.17	27.78	86	0.110
	([14], [15], [28], [29], [30])	CG:143	(-0.20–1.15)		(P<0.001)	80	0.110
Total hin	4	IG:121	0.89	P=0.09	34.17	01	0 228
Total hip	([14], [16], [28], [29])	CG:107	(-0.15–1.92)		(P<0.001)	91	0.558
Control group with no exercise intervention							
Lumbar spine	3	IG:75	2.31	P=0.02	35.56	94	0.061
	([17],[31],[32])	CG:64	(0.41–4.20)		(P<0.001)	94	0.001
Femoral neck	2	IG:54	2.41	P=0.36	47.15	08	0.110
	([17],[31])	CG:42	(-2.72–7.55)		(P<0.001)	98	0.110
Total hip	3	IG:75	1.90	D-0.02	34.20	04	0.229
	([17],[31],[32])	CG:64	(0.15–3.65)	P=0.03	(P<0.001)	74	0.338

8 IG; intervention group, CG; control group, SMD; standardized mean difference, CI; confidence interval

- 9 Elderly: mean age of the intervention group was 60 years or older, Middle-aged: mean age of the intervention group was less than 60 years,
- 10 Total session high; intervention frequency × duration greater than the median (64 sessions) of the selected articles,
- 11 Total sessions low; intervention frequency \times duration less than to the median (64 sessions) of the selected articles

- 13 P-value for meta-regression of Only men and Only women, Elderly and Middle age, Total sessions low and Total sessions high, Control
- 14 group with exercise intervention and Control group with no exercise have the same values as we used the same variable.

Electronic supplementary material

Article title: Impact of high-load resistance training on bone mineral density in osteoporosis and osteopenia: a meta-analysis
Journal: Journal of Bone and Mineral Metabolism
Authors: Yuki Kitsuda¹, Takashi Wada¹, Hisashi Noma², Mari Osaki¹, Hiroshi Hagino^{1,3}
Affiliations: 1) Rehabilitation Division, Tottori University Hospital

Department of Data Science, The Institute of Statistical Mathematics
School of Health Science, Faculty of Medicine, Tottori University

Corresponding author: Yuki Kitsuda, y-kitsuda@tottori-u.ac.jp

Online Resource. Database search strategy

#	Search formula	number of hits
1	osteoporosis [MeSH Terms]	55,448
2	osteopenia [MeSH Terms]	76,122
3	menopause [MeSH Terms]	56,814
4	#1 or #2 or #3	127,463
5	"high intensity"	28,779
6	loading	260,656
7	exercise	458,954
8	resistance	1,148,838
9	strength	365,497
10	"heavy weight"	384
11	training	1,892,349
12	"weight lifting"	5,117
13	#5 or #6 or #7 or #8 or #9 or #10 or #11 or #12	3,798,990
14	#4 and #13	19,049
15	#14 Filters: Randomized Controlled Trial	1,857

PubMed, 2020/6/14

#	Search formula	number of hits	
1	MeSH descriptor: [osteoporosis] explode all trees	4,072	
2	MeSH descriptor: [bone diseases, metabolic]	4,611	
	explode all trees		
3	MeSH descriptor: [menopause] explode all trees	6,839	
4	"high intensity"	6,898	
5	loading	12,179	
6	exercise	95,346	
7	resistance	57,841	
8	strength	36,566	
9	"heavy weight"	47	
10	training	88,788	
11	"weight lifting"	1,173	
12	#1 or #2 or #3	10,829	
13	#4 or #5 or #6 or #7 or #8 or #9 or #10 or #11	221,293	
14	#12 and #13	Cochrane reviews: 42	
		CENTRAL: 1,782	

Cochrane Library, 2020/6/14

Web of Science, 2020/6/14

#	Search formula	number of hits	
1	osteoporosis	91,123	
2	osteopenia	11,278	
3	menopause	30,904	
4	#1 or #2 or #3	121,729	
5	"high intensity"	52,745	
6	loading	1,308,992	
7	exercise	455,895	
8	resistance	1,570,688	
9	strength	1,150,437	
10	"heavy weight"	1,222	
11	training	927,691	
12	"weight lifting"	1,078	
13	#5 or #6 or #7 or #8 or #9 or #10 or #11 or #12	4,936,829	
14	#4 and #13	17,855	
15	#14 and "randomized controlled trial"	804	

CINAHL and MEDLINE, 2020/6/15

#	Search formula	number of hits
1	(MH "osteoporosis")	24,024
2	osteopenia	2,819
3	(MH "menopause")	8,869
4	#1 or #2 or #3	33,829
5	"high intensity"	8,676
6	loading	19,597
7	exercise	194,555
8	resistance	124,902
9	strength	95,187
10	"heavy weight"	94
11	training	235,123
12	"weight lifting"	3,389
13	#5 or #6 or #7 or #8 or #9 or #10 or #11 or #12	584,623
14	#4 and #13	4,321
15	#14 Filters: randomized Controlled Trial	CINAHL: 249
		MEDLINE: 381