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Effects of Cage-Breaking Events in Single-File Diffusion on Elongation Correlation

Ooshida Takeshi1 ∗ and Michio Otsuki2

1Department of Mechanical and Aerospace Engineering, Tottori University, Koyama, Tottori 680-8552, Japan
2Department of Materials Science, Shimane University, Matsue 690-8504, Japan

(Received 2017-08-28)

Collective motion of caged particles is studied by calculating correlations of elongations (i.e. ex-

cess distances between two tagged particles) in a one-dimensional colloidal system, with the focus

on the effect of overtaking events by which particles can hop out of the cage. It is shown analytically

and verified numerically that the effect of overtaking is more prominent in shorter lengthscales, and

also that the two-time elongation correlation exhibits ageing behavior due to overtaking.
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Various soft materials have properties between the liquid-like and solid-like consistencies, asso-

ciated with collective dynamics of the constituents. As one of the simplest cases of such materials,

one may mention a single elastic chain with thermal fluctuation, namely the Rouse model.1, 2 Indeed,

the chain is not liquid nor solid in the usual sense: every monomer in the Rouse chain is inseparably

bonded to its neighbors, yet its mean square displacement (MSD) can grow unlimitedly, in proportion

to the square root of the elapsed time t.

The above-mentioned behavior of MSD ∝
√

t is shared by one-dimensional (1D) systems of

Brownian particles with repulsive interaction that disallows the particles to exchange their positions.

This is known as the single-file diffusion (SFD).3–5 In the ideal case in which the barrier height of the

interaction potential, Vmax, is infinitely large, every particle is eternally caged between its neighbors,

and the longtime dynamics are equivalent to those of the Rouse model.5, 6 The growth of MSD is

understood as a collective motion of particles comprising the cage, which is due to the dominance of

long-wave fluctuations peculiar to low-dimensional systems and akin to the logarithmic behavior of

the MSD in two-dimensional (2D) systems.7–9

More generally, collective motions in glassy dynamics of soft materials require four-point space-

time correlations for their quantification.10, 11 Dynamical susceptibility χ4 is one of such four-point

correlations, developed for computational ease, though its behavior is rather difficult to interpret, as

signals from different processes are mixed in it.12–15 Some other types of space-time correlations are
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therefore needed. While the weakest point of χ4 is that the effect of quasi-uniform cage drift appears

as a decaying factor which obscures the growth of correlation length, it is known that this weakness

can be overcome by space-time correlations based on the idea of particle tracking. In numerical anal-

ysis of glassy liquids, this idea has been implemented as bond breakage correlation,13, 16, 17 which is

completely frame-independent. Displacement correlation, which is also based on particle tracking, has

the advantage of analytical tractability in some cases.5, 12, 14, 18, 19

Here we propose yet another space-time correlation, which at once inherits the strong points of the

bond breakage correlation, being free from undesirable effect of drift, and allows analytical calculation

in the same way as the displacement correlation. The idea is to target on correlations of elongation,

analogous to the interparticle distance correlation previously studied by Lizana et al.6 for ideal SFD

on the basis of the elastic approximation (i.e. the Rouse model).

As an example to illustrate our calculation scheme of elongation correlation Cε, going beyond

the elastic approximation, here we take SFD with overtaking,19–22 allowing the particles to hop out

of the cage. Although there has been a number of studies on the crossover behavior of MSD (from
√

t to t) in SFD with overtaking as a cage-breaking event, to the best of our knowledge, none of them

have presented analytical calculation of space–time correlations to clarify the effect of overtaking on

the collective motion. We establish a framework for analytical calculation of Cε, extending the label

variable method.5, 14, 18, 19, 23 As a result, within a certain approximation justifiable in the limit of rare

overtaking, Cε is obtained as a sum of two parts: a contribution from the density fluctuation in the chain

of the caged particles, and the effect of overtaking. At larger lengthscales the former predominates,

while the latter has an impact on the shortscale behavior of Cε.

The system is specified as follows: The position of the i-th particle, Xi = Xi(t), is subject to the

Langevin equation

mẌi = −µẊi −
∂

∂Xi

∑
j<k

V(Xk − X j) + µ fi(t), (1)

where m is the mass of the particle, µ is the drag coefficient (a scalar constant), and µ fi(t) is the random

force characterized by the free-particle diffusivity D = kBT/µ. The periodic boundary condition,

X j+N = X j + L, implies the mean density ρ0 = N/L. The interaction potential, determining the particle

diameter σ, is specified as V(±r) = Vmax (1 − r/σ)2 for 0 ≤ r ≤ σ and V(r) = 0 otherwise; Vmax is

large but finite, allowing neighboring particles to exchange their positions as a rare event.

On the basis of {Xi}i=1,2,...,N , we define the elongation of the particle pair (i, j) relative to the initial

configuration, as

εi, j(t)
def
=

X j(t) − Xi(t)
X j(0) − Xi(0)

− 1. (2)
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Its correlation, as a function of two time arguments s and t and the initial separation d̃ (, 0), is then

introduced as

Cε(d̃, t, s) def
= d̃ 2 ⟨

εi, j(t)εi, j(s)
⟩

d̃
(0 ≤ s < t), (3)

where ⟨ ⟩d̃ denotes conditional thermal averaging over the pairs (i, j) such that X j(0) − Xi(0) = d̃.

For simplicity, here we limit the initial condition mainly to the equidistant configuration, Xi(0) =

X0(0) + iℓ0 where ℓ0
def
= L/N = ρ−1

0 . In this case, Eq. (3) requires integer values of d̃/ℓ0, which we

denote with ∆ (= d̃/ℓ0 ∈ Z), so that

εi,i+∆(t) =
Xi+∆(t) − Xi(t)

ℓ0∆
− 1. (4)

As long as it is not confusing, we will write simply Cε(∆, t, s) instead of Cε(ℓ0∆, t, s). A variant of Cε

for a single time is also introduced analogously:

C0
ε(∆, s) def

= lim
t→s

Cε(∆, t, s) =
ℓ0

2∆2

N

∑
i

⟨[
εi,i+∆(s)

]2⟩ . (5)

Theoretical approach to these statistical quantities is grounded on hydrodynamical field variables.

The coarse-grained dynamics of {Xi}i=1,2,...,N for timescales greater than m/µ are described by the

Dean–Kawasaki equation,24, 25 with the fluctuating density field ρ and its flux Q defined as

ρ = ρ(x, t) =
∑

i

ρi(x, t), Q = Q(x, t) =
∑

i

ρi(x, t)Ẋi(t),

where ρi(x, t) = δ(x − Xi(t)) is the single-body density.

Subsequently, we introduce the label variable ξ to incorporate the idea of particle tracking into

the continuum description.5, 14, 18, 19, 23 We define ξ = ξ(x, t) as a solution to the equation (ρ,Q) =

(∂xξ, −∂tξ), so that ξ satisfies

ρ (∂t + u ∂x) ξ(x, t) = 0, (6)

with u such that Q = ρu. The convective equation (6) implies that, if we define Ξi(t)
def
= ξ(Xi(t), t),

its value is basically independent of t. In the absence of overtaking, Ξi(t) is actually equivalent to the

numbering of the particle. The constancy of Ξi(t) is checked by calculating its t-derivative as23

dΞi(t)
dt
= Ẋi(t)

∂ξ

∂x

∣∣∣∣∣
x=Xi

+
∂ξ

∂t

∣∣∣∣∣
x=Xi

=
(
ρẊi − Q

)∣∣∣∣
x=Xi

, (7)

which should vanish unless some other particle, say the j-th one, overlaps the i-th particle. As a result

of the overlap in exceptional cases, Ξi(t) changes its value if the velocity difference Ẋi− Ẋ j , 0 persists

until the two particles exchange their positions: this is what we refer to as overtaking.

The overtaking event is thus formulated as a change in the values of Ξi(t) and Ξ j(t), such that their

values are exchanged: Ξi(t2) = Ξ j(t1) and Ξ j(t2) = Ξi(t1), where t1 and t2 denote times before and

after the overtaking event. The absence of overtaking is expressed by dΞi(t)/dt = 0, which could be
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interpreted as a kind of local conservation law for Ξi(t) describing a topological constraint.

Apart from the overtaking event that allows a particle to hop out of the cage, the dynamics of each

caged particle in the present system are governed by collective motion of the surrounding particles.

This collective motion is described through density fluctuations; it is useful to express it with

ψ = ψ(ξ, t) def
= ℓ−1

0
∂x
∂ξ
− 1, (8)

and introduce the Fourier representation, defined as

ψ(ξ, t) =
∑

k

ψ̌(k, t)e−ikξ, ψ̌(k, t) =
∫

eikξψ(ξ, t)
dξ
N
, (9)

where k/(2π/N) ∈ Z. The field ψ is governed by a transformed version of the Dean–Kawasaki equa-

tion,5, 14, 18, 19, 23 given as Eq. (2.12) in Ref. 14, whose linear approximation is found to be equivalent

to the Rouse model1, 2, 5 and the 1D Edwards–Wilkinson equation.12, 26 Let us thereby calculate the

elongation correlation Cε(∆, t, s), defining14, 23

Cψ(k, t, s) def
=

N
L2

⟨
ψ̌(k, t)ψ̌(−k, s)

⟩
. (10)

We begin with expressing x = x(ξ, t) as an indefinite integral of ∂x/∂ξ. Using Eqs. (8) and (9), we

find

x = x(ξ, t) = ℓ0ξ + ℓ0

∑
k

e−ikξ ψ̌(k, t)
−ik

+ XG(t), (11)

where XG(t) is the center-of-mass fluctuation that vanishes for large systems.5 Evaluation at ξ = Ξ j(t)

then yields

X j(t) = ℓ0Ξ j(t) + ℓ0

∑
k

e−ikΞ j(t) ψ̌(k, t)
−ik

. (12)

From Eqs. (4) and (12), in principle, a formula to calculate Cε from Cψ can be derived. This derivation

is carried out firstly in the case of the ideal SFD without overtaking, and secondly in the case in which

overtaking is rare but not negligible.

In the first case, in which Ξ j(t) is frozen to its initial value Ξ j(0) = Ξ0
j as overtaking is forbidden,

Eq. (4) reads

ε j, j+∆(t) =
1
∆

∑
k

e−ikΞ0
j
e−ik∆ − 1
−ik

ψ̌(k, t). (13)

Then we multiply Eq. (13) with its duplicate in which (k, t) is replaced with (−k′, s), and expand the

double summation. Taking into account that the terms with k , k′ vanish on the average, we arrive at

the formula in the absence of overtaking:

Cε(∆, t, s) = 2ℓ2
0

∑
k

1 − cos k∆
k2

⟨
ψ̌(k, t)ψ̌(−k, s)

⟩
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→ L4

πN2

∫ +∞
−∞

1 − cos k∆
k2 Cψ(k, t, s)dk. (14)

This formula (14) allows us to express Cε more concretely, if a concrete expression for Cψ is

available. Here we use5, 26

Cψ(k, t, s) =
S
L2 e−Dc

∗k
2(t−s) +

S init − S
L2 e−Dc

∗k
2(t+s) (15)

with Dc
∗ = ρ

2
0D/S , obtained from the linearized equation for ψ, with the non-equilibrium initial con-

dition taken into account; S denotes the long-wave limiting value of the static structure factor in the

equilibrium state, and S init is the value corresponding to the initial condition (S init = 0 for the equidis-

tant configuration). The integral in Eq. (14) is then evaluated, which yields

Cε(∆, t, s)
S ℓ2

0∆
= φε

 ∆

2
√

Dc
∗(t − s)

 − φε  ∆

2
√

Dc
∗(t + s)

 , (16)

where the function φε( · ) is defined as

φε(θ)
def
= erf θ +

−1 + e−θ
2

√
π θ

≃


θ√
π
− θ3

6
√
π
+ · · · (|θ| ≪ 1)

1 − 1√
π θ

(θ → +∞).

Notice the ageing effect in Eq. (16): if t − s is fixed, still Cε depends on s. In particular, for t → s we

have

C0
ε(∆, s) = S ℓ2

0∆
[
1 − φε(θ0)

]
, θ0 def

=
∆√

8Dc
∗s
, (17)

which is s-dependent (unless s ≫ ∆2/Dc
∗). We also note that, if ageing is negligible (s ≫ ∆2/Dc

∗ and

t − s ≪ s), Eq. (16) seems to be consistent with the result by Lizana et al.6

In Fig. 1, the values of C0
ε predicted by Eq. (17) are compared with those computed directly

from Eq. (1). Except for the choice of V(r) and the initial condition, the numerical calculation was

performed in the same way as in Ref. 19, with finite inertia (m/µ : σ2/D = 1 : 1). The data in

Fig. 1(a), plotted against θ0, are seen to collapse onto a master curve given by Eq. (17), except for the

systematic deviation at small values of θ0. The case with the largest ρ0 and the smallest Vmax, namely

(ρ0,Vmax) = (0.5σ−1, 10kBT ), deviates most prominently. As this deviation is due to the omission of

overtaking, now we need to proceed to the second case.

Let us discuss how the formula (14) is modified by overtaking, restarting from Eq. (12). For the

sake of brevity, we define δΞ j(t)
def
= Ξ j(t) − Ξ j(0) = Ξ j(t) − Ξ0

j . On the assumption of rare overtaking,

we regard δΞ j(t) as a small perturbation, which allows linearizing Eq. (12) in (ψ̌, δΞ j) as

X j(t) ≃ ℓ0Ξ
0
j + ℓ0δΞ j(t) + ℓ0

∑
k

e−ikΞ0
j
ψ̌(k, t)
−ik

. (18)
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Fig. 1. (Color online) Numerical values of C0
ε . (a) A plot against θ0 = ∆/

√
8Dc
∗s, rescaled with S ℓ2

0∆. Three

cases are included: (ρ0σ, βVmax) = (0.2, 10), (0.5, 10) and (0.5, 20). In each case, data are computed with

N = 500, recorded at s = 1000σ2/D, and averaged over 480 runs for each plotted point. The solid line

represents the master curve predicted by Eq. (17). (b) A replot of C0
ε(∆, s)/ℓ2

0 versus ∆, for (ρ0σ, βVmax) =

(0.5, 10) and s = 4000σ2/D, shown with circles (◦). The lines represent theoretical predictions: the solid

line represents Eq. (17), while the dotted line is given by Eq. (25) with H0 taken into account, where

να = 3.15 × 10−5D/σ2 according to Eq. (22). Inset: an analogous plot with βVmax = 2 (broken line for the

theory and circles for numerical values) and βVmax = 5 (solid line and triangles).

Then, following the same line of argument as in the derivation of Eq. (14), we find

Cε(∆, t, s) = 2ℓ2
0

∑
k

1 − cos k∆
k2

⟨
ψ̌(k, t)ψ̌(−k, s)

⟩
+ ℓ2

0H(∆, t, s) (19)

where H(∆, t, s) def
=
⟨[
δΞ j(t) − δΞi(t)

] [
δΞ j(s) − δΞi(s)

]⟩
j−i=∆

.

The first term on the right-hand side of Eq. (19) reproduces Eq. (16), while the second term needs

to be evaluated separately. To be consistent with the treatment of ψ based on the Dean–Kawasaki equa-

tion, the overtaking process should be treated on the basis of Dean’s equation24 for ρi(x, t). However,

within the approximation of the present analysis, a phenomenological modeling will suffice.

We model the overtaking as a random process in which a particle is exchanged with its neighbor

at the frequency να, such that
⟨
[δΞ j(t) − δΞ j(s)]2

⟩
= 2να(t − s). Assuming that distinct exchanges are

uncorrelated, we have

H(∆, t, s) = H(∆, s, s) def
= H0(∆, s) (0 ≤ s < t). (20)

This is further evaluated by calculating the pair distribution function for (δΞi(s), δΞi+∆(s)), as

H0(∆, s) = s + s e−s [I∆−1(s) + I∆(s)] + (−2∆ + 1)e−s
∞∑

n=∆

In(s), (21)
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where s = 4ναs and In denotes the modified Bessel function of the first kind. In particular, for ∆ ≫ 1,

Eq. (21) can be approximated by the first term alone, i.e. H0(∆, s) ≃ 4ναs.

The overtaking frequency να is given by an Arrenius-like expression, with a prefactor that depends

on both the barrier hight Vmax and the mean density ρ0. In the present system, numerical data of να

can be fitted by

να = D
(
a0
ρ0

σ
+ a1ρ

2
0 βVmax

)
e−βVmax , β =

1
kBT

, (22)

with a0 ≈ 1/2 and a1 ≈ 1/6.

The prediction by Eq. (19) is summarized as follows: Using the similarity variables

θ
def
=

∆

2
√

Dc
∗(t − s)

, θ′
def
=

∆

2
√

Dc
∗(t + s)

(23)

suggested by Eq. (16), we find Eq. (19) to predict

Cε(∆, t, s) = S ℓ2
0∆
[
φε(θ) − φε(θ′)

]
+ ℓ2

0H0(∆, s), (24)

with the hopping term estimated by Eqs. (21) and (22). In the limit of t → s, we also have

C0
ε(∆, s) = S ℓ2

0∆
[
1 − φε(θ0)

]
+ ℓ2

0H0(∆, s) (25)

in place of Eq. (17). Let us test these predictions.

The prominent deviation from Eq. (17), seen in Fig. 1(a) for (ρ0,Vmax) = (0.5σ−1, 10kBT ), is

clarified on the basis of Eq. (25). The replot in Fig. 1(b) exhibits a nearly uniform deviation from

Eq. (17), attributable to the last term in Eq. (25) and consistent with Eq. (21). Note, however, that

quantitative agreement is lost if Vmax is so low that frequent overtaking events invalidate the present

theory; see the Inset of Fig. 1(b).

The t-dependence of Cε = Cε(∆, t, s) predicted by Eq. (24) is verified in Fig. 2, where Cε is plotted

against t − s. We have chosen a large value of s, so that φε(θ′) in Eq. (24) is negligible. In the case of

Vmax = 20kBT , the barrier is so high that the hopping term ℓ2
0H0(∆, s) is also negligible; this means

that Cε is given by φε(θ) alone, as is shown by the lower solid line in Fig. 2, and Cε decays away for

t − s → +∞. Contrastively, if the barrier is lower, Cε remains finite for t − s → +∞, as the hopping

term contributes to it. We have evaluated limt−s→∞Cε(∆, t, s) by means of fitting, as is exemplified by

the dashed line in Fig. 2. The residual values thus obtained, denoted with C∞ε and normalized with

ℓ2
0, are plotted against 4ναs in the inset of Fig. 2, with να given by Eq. (22). The result seems to be

reasonably close to the theoretical prediction, C∞ε /ℓ
2
0 ≃ 4ναs.

Thus we have presented a scheme to calculate Cε in SFD with overtaking, by expressing the

motion of particles in terms of ψ̌(k, t) and δΞ j(t). The field ψ̌(k, t) represents fluctuation of density

waves, while δΞ j(t) is a locally conserved quantity serving as an indicator of overtaking. Within the
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Fig. 2. (Color online) (a) Decay of Cε(∆, t, s) with regard to t. The two cases of Vmax = 10kBT and Vmax =

20kBT (with ρ0 = 0.5σ−1 in common) are compared by plotting Cε against t − s, with s = 4000σ2/D

and ∆ = 3 fixed; 160 runs are averaged in each case. The solid lines represent theoretical curves predicted

by Eq. (24), and the dashed line results from fitting with A + B(t − s)−1/2. (b) Numerical values of C∞ε =

limt−s→∞Cε(∆, t, s), nondimensionalized with ℓ2
0 and plotted against 4ναs, i.e. the leading term in Eq. (21).

The squares, circles and triangles denote (ρ0σ, βVmax) = (0.5, 10), (0.5, 12) and (0.3, 10), respectively; the

filled symbols represent results for ∆ = 3, and the open ones for ∆ = 5.

linear approximation, Cε is obtained in Eq. (24) as a sum of two contributions from ψ̌ and δΞ j. The

effect of overtaking is prominent at shorter lengthscales, but it has a relatively small impact on the

long-range correlation (Fig. 1). This is naturally understood, on one hand, by considering that the

overtaking process in SFD is a short-scale event involving only two neighboring particles explicitly.

This interpretation suggests, on the other hand, that it will be quite intriguing to extend the present

framework to systems in which cage-breaking events involve many particles, as the result will provide

information about the space-time scales of such events.

The hopping term ℓ2
0H0(∆, s) in Eqs. (24) and (25) depends on s and grows unlimitedly. This

means that Cε never equilibrates: Cε is subject to an extra ageing effect due to overtaking, in addition

to the effect of S init , S on Cψ in Eq. (15). Besides, the temporal behavior of H0 and Cψ in the present

system are quite similar to that of the correlations of rotational and dilatational modes of deformation

in 2D colloidal liquids.5, 18 On this analogy, we expect that more insight may be given by profound

studies of overtaking: for example, the ρ0-dependence of να in Eq. (22) may be clarified by ideas in

Ref. 22 and suggest an extension to 2D colloidal glasses.

In a wider context of glassy dynamics, cage-breaking events can be conceived as transition be-

tween configurations corresponding to local basins of the energy landscape, often termed as inherent
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structures.27 The overtaking event in SFD is among the simplest examples of such transition. As is

shown in Fig. 2, the effect of this transition between inherent structures remains in Cε for t − s → ∞.

In other words, the “natural distance” between the two tagged particles has changed from its initial

value. This is reminiscent of the theory of elastoplasticity in terms of natural metric,28 which may

help to clarify the Nakahara–Matsuo memory effect in pastes29 as a manifestation of stress anisotropy

induced by shaking.30 An extension of the present work in the direction of these studies on granular

pastes28–30 might be possible, if the change in Cε is related to the stress field in some way analogous

to nonlinear interaction between ψ̌ and δΞ j.
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