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Ideal band shape in the potential thermoelectric material CuAlO2: Comparison to NaxCoO2

Kouta Mori,1,2 Hirofumi Sakakibara,1 Hidetomo Usui,1,2 and Kazuhiko Kuroki2,3

1Department of Engineering Science, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
2JST, ALCA, Gobancho, Chiyoda, Tokyo 102-0076, Japan

3Department of Physics, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
(Received 7 March 2013; revised manuscript received 7 June 2013; published 26 August 2013)

A potential thermoelectric material CuAlO2 is theoretically studied. We first construct a model Hamiltonian of
CuAlO2 based on the first principles band calculation, and calculate the Seebeck coefficient. Then, we compare
the model with that of a well-known thermoelectric material NaxCoO2, and discuss the similarities and the
differences. It is found that the two materials are similar from an electronic structure viewpoint in that they have a
peculiar pudding-mold type band shape, which is advantageous for thermoelectric materials. There are, however,
some differences, and we analyze the origin of the difference from a microscopic viewpoint. The band shape
(a very flat band top but with an overall wide bandwidth) of CuAlO2 is found to be even more ideal than that of
NaxCoO2, and we predict that once a significant amount of holes is doped in CuAlO2, thermoelectric properties
(especially the power factor) even better than those of NaxCoO2 can be expected.
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I. INTRODUCTION

The search for good thermoelectric materials serves as an
intriguing challenge both from the viewpoint of fundamental
physics as well as device applications.1 Thermoelectric ma-
terials are often found in semiconductors, but the discovery
of a large Seebeck coefficient found in NaxCoO2 (Ref. 2,
Fig. 1 right panel), which exhibits a metallic nature of the
conductivity opened up a new avenue for the search for
thermoelectric materials. The coexistence of the large Seebeck
coefficient S and the low resistivity ρ can give rise to a large
power P = S2/ρ, which is important from an application
point of view. Soon after the discovery, the origin of the
large thermopower in NaxCoO2 was studied theoretically,
where the possible importance of the orbital degeneracy3,4

or the narrow bandwidth5 has been pointed out. Later on,
one of the present authors, along with Arita, proposed that
the peculiar band shape in which the top is flat but bends
sharply into a dispersive portion plays an important role in
the coexistence of the large Seebeck coefficient and the low
resistivity in NaxCoO2.6 This band has been referred to as the
“pudding-mold” type. Recently, various materials with good
thermoelectric properties, such as CuRhO2,7–9 Li2RhO4,10,11

and FeAs2,12,13 have been shown to possess this type of band
shape. The effect of the interplay between electron correlation
and this kind of band shape has also been studied.11,14–16

Along this line of study, here we focus on CuAlO2

(Fig. 1 left panel), which has also attracted much attention as
a conducting transparent oxide,17 and has motivated various
theoretical studies.18–20 In fact, several previous studies have
pointed out a strong potential of this material as a good ther-
moelectric material,21,22 although sufficient carrier doping to
reduce the resistivity has not been successfully accomplished
so far. In Refs. 21 and 23, a band structure calculation has
been performed, which shows a flat portion at the top of the
band, which is reminiscent of the band shape of NaxCoO2.
In the present paper, we first construct a model Hamiltonian
of CuAlO2 based on the first principles band calculation, and
calculate the Seebeck coefficient. We also consider the effect of
bandwidth renormalization due to electron correlation effects

that are not taken into account in the first principles band
calculation.

Then, we compare the model with that of NaxCoO2, and
discuss the similarities and the differences. We also analyze
the origin of the difference of the band structure between
the two materials from a microscopic point of view. The
pudding-mold type band shape of CuAlO2 is found to be even
more ideal than that of NaxCoO2, and we predict that once a
significant amount of holes is doped in CuAlO2, thermoelectric
properties (especially the power factor) even better than those
of NaxCoO2 can be expected. This is due to the combination
of an extremely ideal band shape (that enhances the Seebeck
coefficient) and a relatively wide bandwidth (that can give
large conductivity when the holes are doped).

II. CONSTRUCTION OF THE SINGLE ORBITAL MODEL

We perform a first principles band calculation of CuAlO2

using the WIEN2K package.24 We adopt the lattice structure
parameters given in Ref. 23. Here we take RKmax = 7,512 k

points, and adopt the Perdew-Burke-Ernzerhof generalized
gradient approximation (PBE-GGA) exchange correlation
functional.25 The calculation result is shown as dashed lines
in Fig. 2, which is essentially the same as those obtained in
previous studies.21,23 Namely, there is a flat portion around
the Brillouin zone edge, which bends sharply into a dispersive
portion as the � point is approached. This is nothing but the
pudding-mold type band introduced in Ref. 6.

Since the flat portion of the band is well isolated from
other portions, we can extract this portion and construct a
single orbital model, where we exploit the maximally localized
Wannier orbitals.26,27 Here, the extracted orbital is obtained
by projecting onto the 3d3z2−r2 orbital, namely, the obtained
Wannier orbital has a strong Cu 3d3z2−r2 character, while the
contributions from other orbitals due to the hybridization are
implicitly taken into account in this single Wannier orbital.
The result is shown in Fig. 2 as a solid line superposed to the
first principles result.
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FIG. 1. (Color online) The lattice structure of CuAlO2 (left) and
NaxCoO2 (right).

III. SEEBECK COEFFICIENT AND POWER FACTOR

A. The Boltzmann’s equation approach

In this section we calculate the Seebeck coefficient adopting
the single orbital model and using the Boltzmann’s equation
approach, In this approach, tensors of the Seebeck coefficient
S and the conductivity σ are given as

S = 1

eT
K 1 K−1

0 , (1)

σ = e2 K 0, (2)

where e (<0) is the elementary charge, T is the temperature,
tensors K 1,K 2 are given as

K n =
∑

k

τ (k)v(k)v(k)

[
−df (ε)

dε
(k)

]
[ε(k) − μ]n . (3)

Here, ε(k) is the band dispersion, v(k) = 1
h̄
∇kε(k) is the

group velocity, τ (k) is the quasiparticle lifetime, f (ε) is the
Fermi distribution function, and μ is the Fermi level (chemical
potential). Here, due to the derivative of the Fermi distribution
function df (ε)/dε, large contributions to K0 and K1 come
from within kBT from the Fermi level μ. In the present study,
we approximate τ as a constant, so that it cancels out in the
Seebeck coefficient. We simply write σxx and Sxx as σ and
S, respectively. σ and thus the power factor σS2 contain the
constant τ , whose absolute value is not determined. Therefore,
we only discuss the values of the power factor normalized by
its maximum value as a function of hole doping rate. We note
here that the constant τ approximation was also adopted in the
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FIG. 2. (Color online) (a) The Brillouin zone. (b) Left: The first
principles band calculation result of CuAlO2 (dashed lines) and the
single orbital model (solid line). Right: The density of states.

study of NaxCoO2 in Ref. 6, which gave very good agreement
with the experiments as far as the bandwidth renormalization
was taken into account. Since the origin of the pudding-mold
type band is essentially the same between NaxCo2 and CuAlO2

(both originating from a 3d3z2−r2 -like orbital of a transition
metal), we continue to use this approximation in the present
study, while we investigate the bandwidth renormalization
effect due to electron correlation in Sec. IV.

B. The pudding-mold type band

As discussed in Ref. 6, the pudding-mold type band is
advantageous in obtaining a large Seebeck coefficient despite
low resistivity. For a constant τ , Eq. (3) can roughly be
approximated as

K0 = τ
∑

k

(
v2

above + v2
below

)
,

(4)
K1 = τ

∑
k

(
v2

above − v2
below

)
,

where vabove and vbelow are group velocities above and below
the Fermi level (representative values within kBT from the
Fermi level). Since the Seebeck coefficient is proportional to
K1/K0, a larger difference between vabove and vbelow gives
larger S. Physically, this means that a large difference in
the group velocities of holes and electrons results in a large
Seebeck coefficient. When the Fermi level lies near the band
edge, this difference (the vbelow/vabove ratio) can be large
but the absolute values of the velocities are small, so that
the conductivity becomes small. On the other hand, in usual
metallic systems, in which the Fermi level lies in the middle
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FIG. 3. (Color online) The calculated thermoelectric properties
of CuAlO2. (a) The Seebeck coefficient against temperature for 2%
(dashed-dotted), 5% (long dashed), and 10% (solid) hole doping
obtained using the bare band structure, and for 10% doping using
the renormalized band (dashed). (b) The Seebeck coefficient against
the hole doping concentration at T = 300 K obtained using the bare
(solid line) and the renormalized bands (dots). (c) The normalized
power factor against the doping concentration at T = 300 K obtained
for the bare (solid) and the renormalized bands (dots). See Sec. IV
for the calculation result using the renormalized band structure.

of the bands where vabove and vbelow have similar values, the
Seebeck coefficient tends to be small. This is the reason why
a large power factor σS2 is usually difficult to obtain. For the
pudding-mold type band, however, the large density of states
at the top of the band prevents the Fermi level from going
down rapidly even when a large amount of carriers (holes in
the present case) is doped, and when the Fermi level sits close
to the bending point of the band, K1 is large because of the
small vabove due to the flat portion and the large vbelow due to
the dispersive portion of the band. In this manner, the
coexistence of a large Seebeck coefficient and small resistivity
is realized for a wide range of hole doping ratios.

C. Calculation results

Figure 3 shows the Seebeck coefficient calculated for
the single orbital model of CuAlO2. Figure 3(a) shows the
temperature dependence for 2%, 5%, and 10% hole doping,
and Fig. 3(b) is the doping dependence at T = 300 K. These
calculated values [e.g., ∼210 (150) μV/K at T = 300 K for
5% (10)% doping] are similar but somewhat smaller compared
to those values calculated for the single band model of
NaxCoO2 in Ref. 6. It should be noted that in Ref. 6, the
bandwidth was reduced “by hand” from its original first
principles calculation value of �2 down to �1 eV so as to
fit the angle resolved photoemission data, thereby taking into
account the bandwidth renormalization effect. In the present
calculation result of Fig. 3, the original first principles band
structure is adopted, whose width is about 4 eV, i.e., four times
wider than that for NaxCoO2 in Ref. 6. Therefore, a more direct
comparison should be made after the bandwidth renormaliza-
tion is taken into account, which will be done in Sec. IV.

The maximum power factor is reached at around 10% hole
doping, which is a rather large doping rate, and is in fact similar
to the situation in NaxCoO2.6 This is another feature peculiar to
the pudding-mold type band, where a large amount of doping
does not result in a rapid reduction of the Fermi level. It should
be noted that ∼10% doping gives the maximum power factor
within the constant lifetime (τ ) approximation. In reality, the
lifetime may decrease as the doping ratio is increased, so that
the maximum power factor is reached for a smaller doping.

IV. EFFECT OF THE BANDWIDTH RENORMALIZATION

A. Self-energy correction

In this section, we study the effect of the bandwidth renor-
malization due to the many-body correlation. We consider a
many-body Hamiltonian that considers the on-site repulsive
interaction in the single band model. We obtain the self-
energy correction due to the many-body interaction within the
fluctuation exchange (FLEX) approximation,28 thereby taking
into account the effect of spin and charge fluctuations that were
omitted in the first principles calculation. In FLEX, the Green’s
function G(k,iωn) is calculated by solving the Dyson equation.
The self-energy �(k,iωn) in the Dyson equation is calculated
by summing up bubble and ladder diagrams constructed
from the Green’s function that is determined self-consistently.
This calculation is performed by taking 32 × 32 × 32 k-point
meshes and 4096 Matsubara frequencies with the temperature
T = 0.01 eV. The quasiparticle excitation dispersion can be
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FIG. 4. (Color online) The renormalized band dispersion
obtained for various doping ratios for U = 2.5 eV. The red solid
line is the bare band dispersion.

obtained by

ω(k) = z−1
�k {ε(k) − μ + Re �R(k,ω = 0)}, (5)

where ε(k) is the bare band dispersion and �R is the retarded
self-energy, which is approximated as Re �R(k,ω = 0) �
Re �(k,iπkBT ) taking the lowest Matsubara frequency. The
mass enhancement factor is obtained as

zk = 1 − ∂�R(k,ω)

∂ω

∣∣∣∣
ω→0

� 1 − Im �(k,iπkBT )

πkBT
. (6)

In Fig. 4, we show the renormalized band dispersion for several
hole doping ratios obtained for a typical on-site repulsion of
2.5 eV. It can be seen that the bandwidth is monotonically
renormalized as the holes are doped.

B. Seebeck coefficient and power factor

Here we calculate the Seebeck effect using the renormal-
ized band and adopting the Boltzmann’s equation approach
described in Sec. III A. The results are given in Fig. 3
with circles. The temperature dependence of the Seebeck
coefficient shows that it is strongly enhanced, especially at low
temperatures, compared to that calculated using the original
band structure. Also, the doping dependence of the Seebeck
coefficient at 300 K shows that large values are maintained
up to large doping concentrations. The doping dependence
of the power factor is normalized by the maximum value for
the original band structure. The result at 300 K shows that the
maximum value takes roughly a similar value as in the original
case, while the doping dependence becomes less prominent.
The power factor, as a whole, is not enhanced by electron
correlation despite the strong enhancement in the Seebeck
coefficient because the conductivity is suppressed due to the
reduction of the group velocity.

Let us now make a somewhat quantitative comparison with
the single band model of NaxCoO2 in Ref. 6, where the
bandwidth renormalization effect was taken into account by
fitting the angle resolved photoemission data. From the doping
dependence of the Seebeck coefficient at 300 K in Fig. 3, it
can be seen that the obtained values ∼280 and ∼250 μV/K at
5% and 10% doping, respectively, are larger compared to the
corresponding values 250 and 200 μV/K for the single band

model of NaxCoO2.6 This occurs despite the renormalized
bandwidth being wider (>2 eV for <10% doping) in the
present case than that in NaxCoO2 (∼1 eV). Since a wider
bandwidth (a larger group velocity in the dispersive portion
of the band) is favorable for obtaining large conductivity,
the present result suggests that the band shape of CuAlO2

(an extremely flat band top bending sharply into a dispersive
portion) is even more ideal than that of NaxCoO2 from the
viewpoint of the power factor.

V. ORIGIN OF THE PUDDING-MOLD TYPE BAND

A. The effect of the second- and
third-nearest-neighbor hoppings

Both CuAlO2 and NaxCoO2 exhibit a pudding-mold type
band. Here we discuss its origin from the viewpoint of the
hopping integrals on the triangular lattice. Here we focus
on the band structure within the planes, and neglect the
hopping integral in the z direction. The renormalization due to
electron correlation will not be considered here. In Fig. 5,
we show the band structure of the single band model of
both materials in the Brillouin zone of the two-dimensional
triangular lattice, in which the hoppings up to fifth nearest
neighbors are extracted (t1–t5, the original model contains
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FIG. 5. (Color online) (a) The definition of the hoppings on the
triangular lattice. (b) The two-dimensional Brillouin zone. (c), (d)
Band dispersion normalized by t1 and the density of states of the
two-dimensional models of CuAlO2 and NaxCoO2 which considers
the extracted hoppings t1–t5.
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TABLE I. The hoppings for the single orbital model of CuAlO2

and NaxCoO2.

t1 (eV) t2/t1 t3/t1 t4/t1 t5/t1

CuAlO2 −0.45 0.003 −0.069 −0.030 0.034
NaxCoO2 0.18 −0.24 −0.15 −0.001 0.008

very small hoppings between more distant sites). The band
structure is normalized by the nearest-neighbor hopping t1.
Note that the band structure of CuAlO2 is turned upside down
compared to the original one because t1 < 0. The hoppings
normalized by t1 are given in Table I. From this comparison, it
can be seen that the flat portion of the band occurs around the
Brillouin zone edge in CuAlO2, while the flat portion of
the band structure of NaxCoO2 is around the � point. Note
that the path along the Brillouin zone edge K-M in the
two-dimensional Brillouin zone corresponds to lines such as
a-L (or F ) in the three-dimensional Brillouin zone shown in
Fig. 2(a).

To see the origin of this difference between the two
materials, we vary the hopping integrals t2 and t3 “by hand.”

As shown in Fig. 6, the second-nearest-neighbor hopping has
a dramatic effect of making the band around the � point flat
while making it around K-M dispersive. Consequently, the
peak structure of the density of states moves largely from
E < 0 to E > 0 as the absolute value of t2 < 0 is increased.
The third-nearest-neighbor hopping t3 < 0, on the other hand,
has the effect of reversing the dispersion around K-M, so
that the band around K-M once becomes nearly perfectly flat
(around t3/t1 = −0.1) as |t3| is increased.

Now, if we go back to the hopping integrals of the two
materials given in Table I, there is a large difference, i.e., |t2/t1|
is almost negligible in CuAlO2 compared to that in NaxCoO2.
This, along with t3/t1 being somewhat close to −0.1, makes
the band around K-M fairly flat in CuAlO2. Strictly speaking,
t3/t1 ∼ −0.07 is still somewhat away from t3/t1 = −0.1,
where a nearly perfectly flat band appears. Actually, we find
that there is also the effect of t5/t1 > 0, which makes the band
around K-M flat, while enhancing the dispersion around the
� point. In sharp contrast to CuAlO2, the combined effect
of t2 and t3 in NaxCoO2 makes the band around the � point
flat, while enhancing the dispersion around the Brillouin zone
edge K-M.
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FIG. 6. (Color online) Band dispersion of the single orbital model on the triangular lattice in which only (a) t1 and t2 or (b) t3 are considered.
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FIG. 7. (Color online) Band dispersion of models constructed by extracting some of the orbitals and hoppings from the 3d five orbital
models of CuAlO2 [(a)–(c)] and NaxCoO2 [(d), (e)]. The thickness of the lines represents the strength of the d3z2−r2 orbital character. (a), (d)
Only the d3z2−r2 orbital is extracted, and only the nearest-neighbor hopping is considered. (b), (e) d3z2−r2 and dxy/x2−y2 orbitals are extracted, and
only the nearest-neighbor interorbital hopping is considered. (c), (f) Only the d3z2−r2 orbital is extracted, and only the second-nearest-neighbor
hopping is considered.

B. The origin of the difference between CuAlO2 and NaxCoO2

In this section, we discuss the origin of the difference in the
second neighbor hopping between CuAlO2 and NaxCoO2. To
see this, we now construct models of these materials where all
of the five 3d orbitals are considered explicitly. Here, the dif-
ference between the d3z2−r2 orbital in the five orbital model and
the d3z2−r2 orbital mentioned in the previous sections should
be noted. The d3z2−r2 Wannier orbital in the previous sections
consists not only of the d3z2−r2 in the five orbital sense, but also
of the other hybridized orbitals as well. In other words, the
d3z2−r2 Wannier orbital of the single orbital model considered
in the previous sections takes into account the effect of other
orbitals implicitly. Since the band structure in the vicinity of the
Fermi level is the same between the single and the five orbital
models, the two models give the same transport properties.

In the five orbital model, the most relevant band originates
from the d3z2−r2 orbital29 in both CuAlO2 and NaxCoO2, but
other orbitals can make a contribution to the band shape due

to the hybridization. To see this effect, we first hypothetically
vary the on-site energy of the orbitals other than d3z2−r2 . We
find that the dxz/yz orbitals have a small effect on the band
shape in both of the materials. On the other hand, we find
that varying the on-site energy of the dxy/x2−y2 orbitals affects
the flatness of the band top only in CuAlO2. This means that
there is a hybridization between d3z2−r2 and dxy/x2−y2 orbitals
which plays an important role in producing the pudding-mold
type band in CuAlO2.

To further investigate this point, we consider the effects
of the intraorbital and interorbital hoppings step by step.
In Figs. 7(a) and 7(c), we show the band dispersion in
which only the d3z2−r2 orbital is extracted from the five 3d

orbitals, and only the nearest-neighbor [Fig. 7(a)] or the
second-nearest-neighbor hopping [Fig. 7(c)] is considered.
In the band dispersion shown in Fig. 7(b), we extract three
orbitals out of five, namely, d3z2−r2 and dxy/x2−y2 , and consider
only the nearest-neighbor interorbital hoppings between the
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d3z2−r2 and dxy/x2−y2 orbitals. Here, the thickness of the lines
represents the magnitude of the d3z2−r2 orbital weight. This
result shows that the effect of the interorbital d3z2−r2 -dxy/x2−y2

orbital hopping pushes up the d3z2−r2 band top around the
M point. This effect is taken into account as a positive
contribution to t2/t1 in the single orbital model which considers
the effect of dxy/x2−y2 implicitly. Namely, the hopping path
d3z2−r2 → dxy/x2−y2 → d3z2−r2 gives a positive contribution to
the effective t2/t1 between second neighbor d3z2−r2 orbitals. On
the other hand, there is a negative contribution to t2/t1 of the
single orbital model coming from the direct second-nearest-
neighbor d3z2−r2 -d3z2−r2 hopping in the five orbital model,
which pushes down the band around the M point, as shown in
Fig. 7(c). In CuAlO2, the positive and negative contributions
almost cancel each other out, resulting in a very small t2/t1 in
the single orbital model.

CuAlO2NaxCoO2
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|ΔEd|=1eV
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FIG. 8. (Color online) The energy levels of the five orbital model
of NaxCoO2 (left) and CuAlO2 (right). The bottom figure shows the
difference in the ligand position between the two materials.

A similar five orbital analysis for NaxCoO2, shown in
Figs. 7(d)–7(f), reveals that the situation is different. From
Fig. 7(e), it can be seen that the dispersion originating from
the d3z2−r2 -dxy/x2−y2 hybridization is very small, namely, the
contribution of the d3z2−r2 → dxy/x2−y2 → d3z2−r2 path to t2 in
the single orbital model is negligible. On the other hand, there
is a direct d3z2−r2 -d3z2−r2 second neighbor hopping, which
gives a positive contribution to t2/t1 in the single orbital model,
pushing up the band around the M point. Hence, in NaxCoO2,
t2/t1 is large and the flatness of the band does not appear
around K-M-K.

The origin of the difference between the two materials
in the contribution of the d3z2−r2 → dxy/x2−y2 → d3z2−r2

path comes from the difference in the energy level offset
between d3z2−r2 and dxy/x2−y2 in the five orbital model
�Ed = E(dxy/x2−y2 ) − E(d3z2−r2 ). As shown in Fig. 8, this
offset is large in NaxCoO2, while relatively small in CuAlO2.
A smaller energy difference gives a larger contribution of the
d3z2−r2 → dxy/x2−y2 → d3z2−r2 path. The difference in �Ed

can be understood from the lattice structure. As shown in the
bottom of Fig. 8, the oxygen atoms in CuAlO2 are located
at positions toward which the d3z2−r2 orbitals are elongated,
while that is not the case for NaxCoO2. Therefore, the crystal
field of the ligand atoms pushes up the d3z2−r2 level, locating
it just above the dxy/x2−y2 level.

VI. CONCLUSION

To conclude, CuAlO2 is a very good candidate for a ther-
moelectric material with a large Seebeck coefficient coexisting
with large conductivity. The origin of this is the pudding-mold
band similar to, but different from, the one in NaxCoO2.
In CuAlO2, the negligibly small second-nearest-neighbor
hopping does not affect the flat portion of the band around the
Brillouin zone edge already present in the nearest-neighbor
hopping model on the triangular lattice. Moreover, the addi-
tional presence of the third (and the fifth) hopping integrals
makes the band even more flat around the Brillouin zone edge.
This is in sharp contrast with the case of NaxCoO2, where the
large second-nearest-neighbor hopping moves the flat portion
of the band to the � point area. The difference in the band
shape between the two materials comes from the difference
in the electron hopping between the second neighbor d3z2−r2

orbital mediated by dxy/x2−y2 in the five orbital sense. Namely,
in CuAlO2, the d3z2−r2 and dxy/x2−y2 energy levels are close
to each other, giving rise to a large contribution from the
path d3z2−r2 → dxy/x2−y2 → d3z2−r2 , which nearly cancels out
the direct d3z2−r2 -d3z2−r2 contribution to the second neighbor
hopping. The difference in the energy difference between
d3z2−r2 and dxy/x2−y2 levels comes from the position of the
oxygen atoms. A large Seebeck coefficient comparable to the
model of NaxCoO2, despite a wider bandwidth, implies that the
band shape is extremely ideal, and very good thermoelectric
properties, especially a large power factor, are expected once
a large amount of hole doping is accomplished.
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