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Abstract 

Reactive gliosis is the universal reaction to brain injury, but the precise origin and subsequent fate 

of the glial cells reacting to injury is unknown. Astrocytes react to injury by hypertrophy and up-

regulation of the glial-fibrillary acidic protein (GFAP). While mature astrocytes do not normally 

divide, a subpopulation of the reactive GFAP-positive cells does so, prompting the question 

whether the proliferating GFAP+ cells arise from endogenous glial progenitors or from mature 

astrocytes that start to proliferate in response to brain injury. Here we show by genetic fate mapping 

and cell type-specific viral targeting that quiescent astrocytes start to proliferate after stab wound 

injury and contribute to the reactive gliosis and proliferating GFAP-positive cells. These 

proliferating astrocytes remain within their lineage in vivo, while a more favorable environment in 

vitro revealed their multipotency and capacity for self-renewal. Conversely, progenitors present in 

the adult mouse cerebral cortex labeled by NG2 or the receptor for the platelet-derived growth 

factor (PDGFRα) did not form neurospheres after (or prior to) brain injury. Taken together, the first 

fate mapping analysis of astrocytes in the adult mouse cerebral cortex shows that some astrocytes 

acquire stem cell properties after injury and hence may provide a promising cell type to initiate 

repair after brain injury.  
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Introduction 

Reactive gliosis as the response of the central nervous system (CNS) to injury is instrumental for 

sealing off the injured tissue, promoting tissue integrity and restricting inflammation and neuronal 

death (1, 2). Among glial cells, astrocytes, NG2-expressing glial precursors and microglia take part 

in this response (2-4). Astrocytes react to brain injury by hypertrophy of their somata and processes 

(5), increased synthesis of glial-fibrillary acidic protein (GFAP) or re-expression of the progenitor 

markers vimentin and nestin (2, 6). As a subpopulation of these reactive GFAP-positive (+) cells 

also divides (2, 6-8) it has been suggested that these cells arise from endogenous progenitors present 

in the adult brain (3, 4, 8, 9). Discovering the cellular origin of this reaction to brain injury is not 

only crucial to design manipulations towards a better repair (10), but has broader relevance for our 

concept of mature cell types in the mammalian brain. If the dividing GFAP+ cells in reactive gliosis 

originate from previously proliferating cells, such as the widespread NG2+ progenitors (3, 4, 9), 

this implies that mature astrocytes do not resume proliferation and are permanently postmitotic 

cells, as the oligodendrocytes and neurons. Conversely, if reactive, proliferating GFAP+ cells 

originate from astroglial cells that resume proliferation after brain injury, this may imply a certain 

degree of dedifferentiation of astroglial cells towards an immature state. Indeed, proliferating 

astroglial cells in specific brain regions act as adult neural stem cells (11, 12) and a de-

differentiation of astrocytes towards earlier developmental stages, such as in the postnatal (13) or 

embryonic brain (14) may have obvious implications for the attempts to reconstitute neurons after 

brain injury.  

 

Despite the importance of this question fate mapping analysis has so far been restricted to the 

developing brain. Here we have used inducible Cre-mediated recombination to target adult 

astrocytes (15) and examine their progeny after brain injury. As an independent approach we 

pseudotyped lentiviral vectors to target astrocytes (16, 17). Both these techniques allow 
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permanently labeling quiescent mature astrocytes in the adult brain prior to injury and follow their 

progeny after stab wound lesion in the adult mouse neocortex.  

 

Results 

Fate mapping of quiescent astrocytes upon stab wound injury by tamoxifen-inducible 

recombination in the GLAST locus 

Targeting the tamoxifen-inducible form of the Cre recombinase (CreERT2) to the locus of the 

astrocyte-specific glutamate transporter GLAST (Slc1a3) allows inducing recombination in adult 

astrocytes in vivo (15) that can be monitored in the reporter lines R26R (18) or Z/EG (19). When 

R26R was used as an indicator of recombination, β-galactosidase (β-gal) was expressed mostly in 

mature astrocytes positive for the high-affinity glutamate transporter 1 (GLT1), S100β, glutamine 

synthetase (GS) (Fig. 1A,A’,B) and GLAST (knock-in of Cre, 15), but negative for nestin, vimentin 

and GFAP (Fig. 1B and data not shown). Conversely, no reporter+ cells were detected in control 

animals treated only with oil lacking tamoxifen even after brain injury [supporting information (SI) 

Fig. 4A,B; see also 15]. While NG2 mostly labels proliferating glial progenitors, it was recently 

described on a small subset of astrocytes (15, 20). Consistent with these data, β-gal also labeled 

sub-populations of astrocytes that expressed NG2 or the transcription factor Sox10 (Fig. 1B). No 

reporter expression was instead detected in PECAM+ endothelial cells (SI Fig. 4C-D’) or in GSA+ 

microglia (data not shown). Similar data were also obtained with Z/EG mice (86% of GFP+ cells 

are S100β). In line with previous analysis (15) the efficiency of recombination was sufficient to 

label almost half of all astrocytes in the neocortex (see SI Fig. 5A). 

 

In contrast to the high proliferation rate of NG2+ or Sox10+ progenitors in the adult cerebral cortex 

(7, 8), hardly any of the reporter+ cells incorporated the DNA-base analogue 5-Bromo-

2’deoxyuridine (BrdU), even after application of BrdU for one week in the drinking water [Fig. 1C 

‘intact’; see also SI Fig. 5B for comparable behavior of reporter-negative (-) astroglia]. These data 
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therefore confirm and extend our previous analysis (15) that CreERT2-mediated recombination in 

the GLAST locus is targeted primarily to astroglial cells.  

 

Upon stab wound (SW) injury performed in the adult cortex 6-8 days after tamoxifen-induction,  the 

number of β-gal+ cells/mm2 increased by 30-50% within 150 µm from the lesion track compared to 

the contralateral side (SI Fig. 5C), consistent with the increase in astroglial cells after injury. To 

monitor whether cell division by the reporter+ cells contributed to this increase in number, BrdU 

was provided in the drinking water starting at the time of lesion to label all cells dividing upon 

injury (Fig. 1C-E’). In contrast to the virtual absence of β-gal/BrdU double-labeled cells in the 

cortex prior to injury (Fig. 1C, BrdU for 1 week) or contralateral to the injury site (less than 2% at 

all stages), as early as 24 hours post lesion (hpl) more than 10% of all β-gal+ cells were BrdU+. By 

7 days post lesion (dpl) this proportion increased to almost half of all fate-mapped astrocytes (Fig. 

1C-E’). Importantly, the vast majority of the BrdU/β-gal double-labeled cells expressed GLT1, 

S100β or  GFAP (Fig. 1C), indicating that about half of the formerly non-proliferating astrocytes 

starts to divide following injury. Notably, the proliferative activity of these reporter+ astrocytes 

closely corresponds to that of reporter-negative astrocytes (SI Fig. 5B). Astrocytes proliferating 

after injury could also be labeled by a single pulse of BrdU 2 hours before sacrifice (10±2% of β-

gal+ cells, 88±7% of BrdU+/β-gal+ cells were GLT-1+, 3dpl; Fig. 1F-G’) indicating that many of 

them undergo fast proliferation.  

 

Even 4 weeks after injury, the vast majority (83±3%) of the reporter+, BrdU+ cells were S100β+ 

and GLT1+ showing that most proliferating astrocytes remain within their lineage. This was the 

case also for the entire pool of reporter+ cells of which 80% also contained GLT1 and S100β at 

30dpl (Fig. 1B, SI Fig. 5D). While some of the reporter+ astroglial cells transiently down-regulated 

GLT1 and/or S100β due to acute damage (21), the majority of labeled cells up-regulated GFAP. 

Only 5% of β-gal+ astrocytes expressed GFAP in the uninjured cortex and this proportion rose to 
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67% 3dpl (Fig. 1B), with a subset of these cells also expressing vimentin and nestin. GFAP-

upregulation declined at later time points (Fig. 1B; 48±7% GFAP+ cells amongst reporter+ 

astrocytes at 30 dpl). Reporter+ astrocytes also participated in glial scar formation and contributed a 

constant proportion of reactive astrocytes at all stages after injury (SI Fig. 5 A,D,E). Conversely, no 

neuroblasts or mature oligodendrocytes were detected amongst a total of 25,488 reporter+ cells 

examined after injury, suggesting that astrocytes do not generate these cell types at detectable 

frequencies (above 0.01%). Thus, reporter+ astrocytes remain within the astroglial lineage and take 

part in reactive gliosis. 

 

Fate mapping of quiescent astrocytes upon SW injury by LCMV-pseudotyped lentiviral 

vectors 

To examine the astroglial lineage exclusively at the side of injury and avoid any possible 

contribution of cells migrating from the adult stem cell niches or the white matter, we injected 

lentiviral vectors containing the enhanced green fluorescent protein (GFP) pseudotyped with the 

glycoproteins of the lymphocytic choriomeningitis virus (LCMV) (16, 17) into the cortical grey 

matter (GM). This resulted in labeling of astrocytes and some GSA+ microglia, without any 

Sox10+ or NG2+ cells (Fig. 2A-F). Not a single labeled cell incorporated BrdU prior to injury (0 of 

220 GFP+ cells) while more than a third had incorporated BrdU after injury (Fig. 2G-K). The 

labeled cells that had initiated proliferation were GLT1+, GFAP+ or S100β+ astrocytes and no 

GFP+ cells were double-labeled with NG2+ or Sox10+ cells after injury (0 of 147 GFP+ cells, 7dpl; 

0 of 172 GFP+ cells, 30dpl) (Fig. 2J,K). Similarly, no neurons or oligodendrocytes were detected 

amongst a total of 1,866 GFP+ cells examined after SW lesion. Thus, using two independent 

techniques we demonstrate that a considerable subset of previously quiescent astroglial cells 

initiates proliferation upon injury, but does not undergo lineage transitions in vivo. 

 

Potential of astrocytes after stab wound injury 
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As the environment in the adult injured brain is known to inhibit neurogenesis (22-24), we 

examined the potential of the cells reacting to injury 3 dpl using the neurosphere assay. While no 

neurospheres were generated from cells isolated from the intact cortex contralateral to the SW, cells 

isolated from the injury site formed neurospheres (1/6,349 cells, n=800,000 cells, 4 experiments) 

(Fig. 3A). These were able to self-renew for more than 8 passages (SI Figure 6A) and generate, at 

each passage, βIII-tubulin+ neurons, GFAP+ astrocytes and O4+ oligodendrocytes after 7-10 days 

in differentiation conditions (Fig. 3B-D). To identify the source of these multipotent progenitors, we 

isolated astrocytes by fluorescence-activated cell sorting (FACS) on the basis of their green 

fluorescence from the cortex of the hGFAP-eGFP transgenic mouse line (25) with GFP expressed in 

reactive astrocytes (data not shown) or the GLAST::CreERT2;Z/EG mice described above (Fig. 3E-

H). GFP+ cells sorted from the lesioned cortex at 3 dpl were all (100%, n=126) S100β+ and 

GFAP+ and formed neurospheres with an 10-20x increased efficiency (1/316 cells hGFAP-eGFP; 

1/675 cells GLAST::CreERT2;Z/EG) in contrast to the lack of neurospheres from GFP+ cells 

isolated from the intact contralateral cortex (0 in 60,000 hGFAP-eGFP; 0 in 19,500 cells 

GLAST::CreERT2;Z/EG). Also these neurospheres originating from astrocytes of the injured cortex 

self-renewed for more than 6 passages (data not shown) and generated neurons, astrocytes and 

oligodendrocytes (Fig. 3E-N). Notably, the GFP+ cells sorted from the GLAST::CreERT2;Z/EG 

mice were induced to express the reporter gene prior to injury as described above. The presence of 

GFP+ neurospheres therefore clearly demonstrates that astrocytes labeled prior to injury acquired 

the capacity to form neurospheres and that the GFP+ neurospheres were not derived from the small 

proportion of GFP- cells included in the sort (purity of sortings 95%).  

 

To further ensure clonality, we visually inspected cells sorted into separate wells and examined 

each well containing a single GFP+ cell (n=329) daily for 7-10 days (Fig. 3I-L). Strikingly, 1 of 18 

GFP+ cells gave rise to a multipotent neurosphere generating neurons (Fig. 3M), astrocytes and 

oligodendrocytes (Fig. 3N). Thus, much of the relatively low efficiency in neurosphere formation 
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seems to be due to death of the cells after sorting. Amongst the healthy GFP+ astroglial cells (all 

S100β+ or GFAP+, see above) more than 5% form neurospheres. 

 

Finally, we aimed to determine whether other glial populations that react to injury may also acquire 

the capacity to form multipotent neurospheres. However, when we isolated cells from the injury site 

by NG2 or PDGFRα surface staining (SI Fig. 6B,C), no multipotent neurospheres were obtained (0 

of 35,000 and 25,000 respectively), even upon addition of PDGF to these cultures (26). These data 

therefore support the idea that mature astrocytes have a rather unique capacity to dedifferentiate and 

resume multipotency, in keeping with their developmental origin (27).  

 

Viral tracing of stem cell-derived lineages originating in the subependymal zone lining the 

lateral ventricle 

To clarify whether the neurosphere-forming GFP+ cells present in the cortex injury site may 

originate from the subependymal zone (SEZ), one of the regions of continuous adult neurogenesis 

(11), we injected GFP-containing VSVG-pseudotyped lentiviral vector into the SEZ ipsilateral to 

the site of SW injury (28). Three days later, most GFP+ cells were detected within the SEZ and the 

rostral migratory stream (RMS) with few cells migrating into the white matter (SI Fig. 7A, B), but 

none had entered the cortical GM surrounding the site of injury (SI Fig. 7B). To ensure that smaller 

numbers of GFP+ cells did not escape detection, we used FACS analysis and found that 2.6% of 

SEZ cells were GFP+ (SI Fig. 7C), while no GFP+ cells were detectable in the tissue isolated from 

the injury site (SI Fig. 7D). This analysis demonstrates that the neurosphere-forming cells that occur 

with a frequency higher than 5% are not derived from stem cells in the SEZ.  

 

Discussion 

The possibility to target quiescent astrocytes by either genetic or viral manipulations and follow 

these cells during the reactive response to injury allowed establishing a direct lineage relation 
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between reactive and quiescent astroglia. As our fate mapping technique labels a considerable 

proportion of astrocytes that also exibit a proliferative behavior similar to reporter-negative 

astroglia, we conclude that a considerable proportion of quiescent astrocytes resumes proliferation 

upon injury and contributes to the generation of reactive astrocytes. 

 

In the adult cerebral cortex mature astrocytes lack expression of GFAP, nestin, vimentin and 

Tenascin-C and do not proliferate. However these proteins are contained in some reactive glial cells 

some of which also proliferate (2, 8, 29, 30) and in more immature glia such as radial glia and 

postnatal glial progenitors that also proliferate (13, 27, 31). As our fate mapping analysis now 

reveals that reactive astroglia derive from mature astrocytes, these data suggest that astrocytes 

exposed to injury may indeed resume properties of glia present at earlier developmental stages. 

Thus, in contrast to mature oligodendrocytes and neurons, mature astrocytes are not permanently 

postmitotic but rather retain the capacity to resume proliferation and up-regulate developmental 

features, a process that we refer to as ‘dedifferentiation’.  

 

Even more importantly, we demonstrate that these changes occurring in astrocytes are accompanied 

by the acquisition of stem cell properties, as some of the astrocytes labeled prior to injury acquire 

the capacity to form multipotent and self-renewing neurospheres. Notably, astrocytes loose the 

potential to form neurospheres after the second postnatal week (32), further supporting the concept 

that reactive astrocytes activate properties of earlier developmental stages. Indeed, we could also 

show that neither the astrocytes proliferating after injury nor the neurosphere-forming astrocytes are 

derived from the neurogenic SEZ. These data therefore demonstrate for the first time a novel source 

of multipotent cells in the adult cerebral cortex after brain injury. Strikingly, this is not a general 

feature of glial cells reacting to injury. Glial progenitors that actively proliferate in the adult cortex 

even prior to injury, such as NG2+ or PDGFRα+ cells (3, 4, 8, 33), are not capable of forming 

multipotent neurospheres. This is notably different from the potential of these cells at postnatal 
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stages (34) and in adult white matter tracts (35). Thus, specifically astrocytes react to brain injury 

by partial dedifferentiation and acquisition of multipotency.  

 

Our fate mapping analysis further demonstrates that these reactive astrocytes – despite being 

multipotent when isolated in vitro – can not pursue their full potency in vivo and rather remain 

within their astroglial lineage. This is despite the activation of the same growth factor pathways 

(FGF2 and EGF) that are used to expand neurosphere cells also after injury in vivo (36, 37). 

Although these signals can trigger neuronal repair at specific sites  in vivo (23), in most other CNS 

regions the infusion of EGF and FGF2 is not sufficient to elicit a considerable degree of 

neurogenesis locally (24). This situation can be improved after transduction with potent neurogenic 

transcription factors (8, 24), but the response is still rather limited. Obviously the anti-neurogenic 

environment present in the adult brain parenchyma (38) contributes to the predominant glial fate in 

vivo with Notch (39) and BMP-signaling (40) acting as  potential candidates for this fate restriction. 

In addition, our results now suggest that the limited neurogenic response even after overexpression 

of neurogenic factors may also be due to targeting glial cells with less plasticity than the multipotent 

subset of reactive astrocytes. Indeed, the viral vectors used in previous studies target predominantly 

NG2+ progenitors (8, 24). Our data now propose reactive astrocytes as a promising source of 

multipotent cells within the injury site that may be particularly suited to elicit neuronal repair in 

brain regions far away from zones of adult neurogenesis.    

 

Materials and Methods  

Animals, surgical procedures and tamoxifen treatment.  

GLAST::CreERT2 and R26R or Z/EG double heterozygous (GLAST::CreERT2;R26R or 

GLAST::CreERT2;Z/EG respectively) of 8-12 week age received tamoxifen (Tx) dissolved in corn 

oil (or corn oil only, SI Fig.4A,B) to induce Cre activity (15). For SW lesion, animals were 

anesthetized and injured in the right neocortex (Bregma from -0.9 to -2.7 mm, latero-lateral 1.7 mm, 
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0.9 mm deep) as described previously (8). Mice were perfused transcardially with 4% 

paraformaldehyde (PFA) in phosphate buffer  at 24 hours, 3, 7 and 30 days after lesion.  

For viral vector injections, C57Bl/6 mice were anesthetized and injected with either VSVG-

pseudotyped lentivirus into the SEZ (28) or LCMV-pseudotyped lentiviral vectors (Bregma –1.6 

mm, latero-lateral 1.6 mm, 0.5-1 mm deep). SEZ-injected animals  underwent SW injury 

immediately after injection and were sacrificed 3 days later for histology or FACS analysis.  

 

Proliferation analysis and immunohistology  

To analyze proliferation of reporter+ or LCMV-infected cells, two protocols were applied. To 

monitor both fast and slow cell divisions, animals received BrdU in drinking water (1 mg/ml) for 1 

week, or from the moment of SW until they were perfused. Alternatively, BrdU was injected i.p. 

(100 mg/kg body weight) 2 hours before sacrifice (single BrdU pulse, labeling fast proliferating 

cells in S-phase). Immunostainings were performed according to 8 (see SI Immunohistology for 

details and antibody list). 

 

Quantitative analysis 

Quantifications  were performed by confocal analysis or by means of NEUROLUCIDA and 

NEUROEXPLORER software (Microbrightfield). For the GLAST::CreERT2;R26R mice, the 

analysis was performed on 200,000 μm2 areas in the cortical GM within 150 μm from the lesion 

track, and in corresponding areas of the contralateral hemisphere or intact cortex. 82 to 154 β-gal-

expressing cells were counted for each animal per staining. Results are presented as the mean 

calculated between different animals (at least three animals for time point unless stated differently) 

and the variation between animals is depicted as the standard error of the mean (SEM). 

 

Lentiviral vector production  
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Here we used a HIV-based lentiviral eGFP vector pseudotyped with the LCMV glycoprotein (Fig. 

2) or VSVG (SI Fig. 3) generated as described (28) or by transient cotransfection of 293T cells with 

pFUGW (41), where eGFP is encoded under the control of the human ubiquitinC promoter, the 

packaging plasmid pCMV∆R8.91 (42) and the pseudotyping plasmid pHCMV-GP(WE-HPI) (43) 

with a stable variant of the LCMV envelope protein (GenBank Accession No. AJ318512). Virus 

particles were produced as in 44.  

 

Isolation of cortex cells and neurosphere culture 

After removal of the meninges, GM tissue surrounding the SW injury of the neocortex and a similar 

piece at the same rostrocaudal level in the contralateral hemisphere were dissected at 3dpl and 

neurospheres were generated as in 45. For selection of astrocytes the same procedure was 

performed with cortices (ipsilateral and contralateral to the injury side) of hGFAP-eGFP or 

GLAST::CreERT2;Z/EG mice and cells resuspended in culture medium were separated into GFP+ 

and GFP- fractions at a BD FACS Aria (gating parameters set by side and forward scatter to 

eliminate debris, dead and aggregated cells) at 530 nm and a flow rate of 1000 events/s. 10,000 

sorting events (mean of 2200 cells after counting using a Neubauer Chamber) were plated into a 

single well of a 24 well plate (NUNC) and cultured as above. For single cell analysis sorted cells 

were serially diluted into Terasaki wells with 20µl medium and cultured for up to 10 days before 

passage. From hGFAP-eGFP mice, cells expressing NG2 or PDGFRα were isolated from  either the 

GFP+ or  GFP- cells, and were tested for neurosphere formation according to 45  or in the presence 

of  PDGF (26). 

For differentiation each neurosphere was plated onto a glass coverslip coated with poly-D-Lysine in 

a single well of with 1 ml neurobasal medium (Invitrogen) supplemented with 1% FCS for 10 days. 

Differentiation was assessed 6-10 days after plating. 
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Figure legends 

Fig. 1. Proliferation and fate of genetically labeled astrocytes in the intact or injured mouse 

neocortex.  

(A, A’) β-gal+ cells exhibit an astrocytic morphology and co-express S100β in the intact cortex 

[DAPI is blue in (A) causing the white colour in A’]. (B) Identity of β-gal+ cells in the intact cortex 

and hours (h) or days (d) post lesion (pl). (C) Percentage and phenotype analysis of  β-gal+ cells 

that incorporated BrdU provided in the drinking water (colors as indicated in B). (D-E’) A large 

number of genetically labeled β-gal+ astrocytes incorporated BrdU (arrows) 3 (D) or 30 (E) dpl 

after BrdU in drinking water (dashed line: lesion track). Arrows in (D) point to BrdU+/β-gal+ cells 

displaying GFAP up-regulation. (F-G’) β-gal+ astrocytes incorporating BrdU (arrows) 2 hours after 

a single BrdU injection. Scale bars: A, E, G, 100 μm; A’, D, E’, F, F’, G’, 40 μm.  

 

Fig. 2. LCMV-targeted cells in the intact cortex and their progeny after lesion. 

(A-F) Most LCMV-infected GFP+ cells in the intact cortex have the morphology and antigen 

profile (S100β or GLT1 , red in A-C’; arrows in B-C’) of protoplasmic astrocytes and do not contain 

Sox10 (red, arrows in E), while some are GSA+ microglia (red, arrows in D’). (F) Histogram 

depicting the proportion of cell types infected by the LCMV virus. (G-K) Progeny of GFP+ cells 

after injury with examples of GFP+ and GFAP+ (G, G’), GLT1+ (H, H’) and S100β+ (I-I’’) 

astrocytes that incorporated BrdU (arrows point to triple-labeled cells) 7-30 days post lesion (dpl). 

Histograms (J, K) depict the identity of all (J) or BrdU+ GFP+ cells. Arrowheads in C’ and G’ 

outline processes positive for GLT1 (C’) or GFAP (G’).  Scale bars: A, 100 µm; B-I’’, 30 µm.  

 

Fig. 3. Neurosphere forming cells upon injury.  

(A-D, F-N) Micrographs depicting examples of neurospheres formed by cells isolated from the 

lesioned cortex (10 days in vitro) (A, F, I-L) and their progeny 10 days in differentiating conditions 

(B-D, G, H, M, N). (E) depicts the sorting profile of cortical cells isolated 3 dpl from the injury site 
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of GLAST::CreERT2;Z/EG mice (E, sortings for F-H) with the GFP+ signal in yellow. Scale bars: 

A, D, 50 μm; B-D, F-H 20μm; I, 10 µm.  
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