processes MBPY

Article

Horseradish Peroxidase-Decorated Artificial Viral
Capsid Constructed from f-Annulus Peptide via
Interaction between His-Tag and Ni-NTA

Kazunori Matsuura 1'2*(, Yuriko Shiomi 1, Toshihumi Mizuta 3 and Hiroshi Inaba -2

1 Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University,

Tottori 680-8552, Japan; perinko23@gmail.com (Y.S.); hinaba@tottori-u.ac.jp (H.I.)

Centre for Research on Green Sustainable Chemistry, Tottori University, Tottori 680-8552, Japan
Technical Department, Tottori University, Tottori 680-8552, Japan; mizuta@tottori-u.ac.jp

*  Correspondence: ma2ra-k@tottori-u.ac.jp; Tel.: +81-857-31-5262

Received: 28 September 2020; Accepted: 12 November 2020; Published: 13 November 2020 f‘r:,e(fgtz);

Abstract: Artificial construction of spherical protein assemblies has attracted considerable attention due
to its potential use in nanocontainers, nanocarriers, and nanoreactors. In this work, we demonstrate a
novel strategy to construct peptide nanocapsules (artificial viral capsids) decorated with enzymes via
interactions between His-tag and Ni-NTA. A f-annulus peptide derived from the tomato bushy stunt virus
was modified with Ni-NTA at the C-terminus, which is directed toward the exterior surface of the artificial
viral capsid. The f-annulus peptide bearing Ni-NTA at the C-terminus self-assembled into capsids of
about 50 nm in diameter. The Ni-NTA-displayed capsids were complexed with recombinant horseradish
peroxidase (HRP) with a C-terminal His-tag which was expressed in Escherichia coli. The f-annulus
peptide-HRP complex formed spherical assemblies whose sizes were 30-90 nm, with the (-potential
revealing that the HRP was decorated on the outer surface of the capsid.

Keywords: artificial viral capsid; self-assembly; B-annulus peptide; horseradish peroxidase;
nanocapsule; surface decoration

1. Introduction

Natural supramolecular protein nanocapsules such as viral capsids [1,2], clathrin [3],
carboxysomes [4], encapsulins [5,6], lumazine synthases [7], and ferritins [8,9] play pivotal roles
in many biological processes associated with compartments, transports, and reactions. Natural and
engineered protein nanocapsules with a discrete size and hollow nanospace have been used as
biomedical carriers and reactors for artificial nanomaterials [6-15]. Advances in the molecular design
of proteins/peptides mimicking natural nanocapsules have made it possible to create nanocapsules
with functions comparable to or surpassing those of natural ones [16-22]. One of the main strategies
in constructing artificial protein/peptide nanocapusles is by self-assembly of amphiphilic molecules.
For example, Nolte et al. demonstrated that protein nanocapsules can be self-assembled from
“giant amphiphiles” consisting of horseradish peroxidase (HRP) and polystyrene, which are used in
peroxidase-based enzymatic cascade reaction systems [23-25]. Hayashi et al. developed an artificial
light-harvesting protein nanocapsule self-assembled from hexameric hemoproteins modified with
poly(N-isopropylacrylamide) [26]. Another strategy to construct artificial nanocapsules is to utilize
the interactions among secondary structures in the self-assembling protein/peptide subunits [27-32].
For example, Kawakami et al. designed polyhedral protein nanocapusles constructed from fusion
proteins consisting of pentamer- and dimer-forming coiled-coil units [29]. Marsh and coworkers
developed highly stable icosahedral protein nanocapsules self-assembled from trimeric protein
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subunits bearing rigid coiled-coils [30]. Although the construction strategy of artificial protein/peptide
nanocapsules has progressed, the chemical functionalization of nanocapsules remains a challenge.

We have previously reported that a 24-mer f-annulus peptide derived from tomato bushy
stunt virus capsid spontaneously formed hollow nanoassemblies, “artificial viral capsids” [33],
which can encapsulate various guests such as anionic dyes, DNAs, quantum dots, and His-tagged
proteins [19,34-38]. Furthermore, modification of the C-terminus, which is expected to be directed
toward the exterior surface of the capsid, enabled modification of the outer surface of artificial viral
capsids with gold nanoparticles, coiled-coil peptides, single-stranded DNAs, human serum albumin,
and ribonuclease S [39-44]. These decorations onto artificial viral capsids were based on covalent
bonds between S-annulus peptide and functional molecules or reconstruction of proteins. In this
study, we developed a simple, general method to decorate proteins bearing tags onto the artificial
viral capsids. That is, we constructed HRP-decorated artificial viral capsids via specific interactions
between the His-tag connected to the C-terminus of HRP and Ni-NTA displayed on the capsid surface
(Figures 1 and 2).
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Figure 1. The self-assembly of artificial viral capsids decorated with Ni-NTA and horseradish
peroxidase (HRP).
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Figure 2. Structure and amino acid sequence of His-tagged HRP.
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2. Materials and Methods

2.1. General

Chemical reagents obtained from commercial sources were used without further purification.
Ultrapure water (>18 M() cm) purified using a Millipore Purification System (Milli-Q water) was used as
a solvent for the peptides. Reverse phase HPLC was performed at room temperature using a Shimadzu
LC-6AD liquid chromatography system equipped with Inertsil WP300 C4 (GL Science) columns (250
X 4.6 mm or 250 X 20 mm) and a UV/Vis detector (220 nm, Shimadzu SPD-10AVvp). MALDI-TOF
mass spectra were measured using an Autoflex T2 instrument (Bruker Daltonics) in linear/positive
mode with a matrix (x-cyano-4-hydroxy cinnamic acid (x-CHCA) or sinapinic acid) circular dichroism
(CD) spectra were measured using a JASCO J-820 spectrophotometer equipped with a Peltier-type
thermostatic cell holder at 25 °C in a 1.0 mm quartz cell.

2.2. Preparetion of His-Tugged HRP

A nucleotide fragment of HRP was amplified using standard PCR methods. The HRP fragment
was cloned into a pET23a vector, with its His-tag and additional sequence (AAALGHHHHHH)
located at the C-terminus, using the In-Fusion cloning kit (TaKaRa Bio). The pET23a vector encoding
His-tagged HRP was transformed into an Escherichia coli strain (BLR(DE3)). Bacterial cells were spread
on Luria-Bertani (LB) agar containing 50 ug/mL ampicillin and grown at 37 °C overnight. A single
transformant colony was grown in LB medium at 37 °C overnight. The culture was diluted 100-fold
by the addition of fresh LB medium and grown to an optical density (OD) of 0.5, and the culture
was subsequently incubated with 1 mM isopropyl -D-1-thiogalactopyranoside (IPTG) at 37 °C. After
incubation for 3 h, cells were harvested by centrifugation at 8000 rpm for 10 min. The cell pellets were
suspended in buffer A (50 mM Tris-HCl pH 8.0, 1 mM ethylenediaminetetraacetic acid (EDTA), 10 mM
dithiothreitol (DTT)). The cells were lysed by sonication. Three centrifugations at 14,500 rpm for 20 min
were carried out. After the first centrifugation, the pellets were washed with buffer A supplemented
with 2 M urea. After the second centrifugation, the inclusion body was solubilized in buffer B (50 mM
Tris-HCl pH 8.0, 1 mM DTT, 6 M urea). After the third centrifugation, His-tagged apo-HRP in the
supernatant was refolded according to reported procedures [45]. The refolded His-tagged HRP was
purified by a HisTrap HP column (GE Healthcare) using an elution buffer (10 mM Tris-HC] pH
7.4,0.15 M NaCl, 200 mM imidazole, 2M Urea). The His-tagged apo-HRP was characterized using
SDS-PAGE and MALDI-TOF-MS. The eluted sample (0.4 mg/mL) was mixed with hemin (2 equivalents)
in 10 mM Tris-HCl pH 7.2 and stirred for 40 min. The sample was dialyzed (1 kDa cut-off) against 10 mM
Tris-HCl pH 7.2 overnight. The His-tag HRP obtained was characterized using MALDI-TOF-MS.

2.3. Preparation of B-Annulus Peptide C-Terminus-Modified with Ni-NTA

The p-annulus-GGGCG peptide H-Ile-Asn(Trt)-His(Trt)-Val-Gly-Gly-Thr(tBu)-Ile-Met-Ala-
Pro-Val-Ala-Val-Thr(tBu)-Arg(Pbf)-GIn(Trt)-Leu-Val-Gly-Ser(tBu)-Gly-Gly-Gly-Cys(Trt)-Gly-Alko-PEG
resin was synthesized using standard Fmoc-based coupling reactions (4 equivalents. Fmoc-amino
acids) at a 0.125 mmol scale on commercially available Fmoc-Gly-Alko-PEG resin (0.22 mmol/g,
Watanabe Chemical Ind. Ltd.). The deprotection of Fmoc groups was carried out with 20% piperidine
in N,N-dimethylformamide (DMF) at room temperature for 15 min. Coupling reactions of the
Fmoc-protected amino acids (4 equivalents) were carried out for 90 min at room temperature
using four equivalents of (1-cyano-2-ethoxy-2-oxoethylidenaminooxy) dimethylamino-morpholino-
carbenium hexafluorophosphate (COMU) in N-methylpyrrolidone (NMP) and eight equivalents
of diisopropylamine (DIPEA) in NMP. Progression of the coupling reactions and deprotection of
the Fmoc group was confirmed by a 2,4,6-trinitrobenzenesulfonic acid (TNBS) and chloranil test
kit (Tokyo Chemical Industry Co., Ltd.). The peptidyl resin was washed with NMP. The peptide
was cleaved from the resin and deprotected with a cleavage cocktail of trifluoroacetic acid
(TFA)/1,2-ethanedithiol/triisopropylsilane/thioanisole/water [8.15/0.25/0.10/0.50/0.50 (mL),] at room
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temperature for 3 h. After filtration to remove resins, the filtrates were concentrated in vacuo.
The peptide was precipitated with methyl tert-butyl ether and the supernatant was decanted. After
three washes with methyl tert-butyl ether, the peptide was freeze-dried to give 228 mg of a colorless
solid (66% yield). The reverse-phase HPLC of the crude peptide was eluted with a linear gradient of
CH;3;CN/water containing 0.1% TFA (26/74 to 29/71 over 120 min) and showed one peak at 23 min.
The isolated yield was 24%. MALDI-TOF MS (matrix: a-CHCA): m/z = 2637 [M]™.

A 1.0 mM aqueous solution of f-annulus-GGGCG peptide in 10 mM Tris-HCl buffer (pH 7.2, 0.1 mL)
was mixed with a 2.5 mM aqueous solution (0.1 mL) of maleimido-C3-NTA (Dojindo Laboratories),
and then the mixture was incubated for 15 h at room temperature. The mixture was purified using
reversed-phase HPLC and eluted with a linear gradient of acetonitrile/water (26/74 to 29/71 over 120 min)
containing 0.1% TFA to provide pure -annulus-NTA peptide (isolated yield 42%). MALDI-TOF-MS
(matrix: a-CHCA): m/z = 3064 [M]*.

The purified -annulus-NTA peptide was dissolved in 10 mM Tris-HCl buffer to prepare a 5.0 mM
aqueous solution. Subsequently, an aliquot of NiCl, solution in 10 mM Tris-HCl buffer was added
to the peptide solution to become [peptide] = [Ni2*] = 2.5 mM. Formation of the p-annulus-Ni-NTA
complex was confirmed by MALDI-TOF-MS (matrix: x-CHCA): m/z = 3123 [M]".

2.4. Complexation of His-Tugged HRP with Ni-NTA-Modified B-Annulus Peptide

Stock solutions (0.1 mM) of f-annulus-Ni-NTA were prepared by dissolution in 10 mM Tris-HCl
buffer (pH 7.2). The complexes of f-annulus-Ni-NTA with His-tagged HRP were prepared by mixing
with aqueous solutions of His-tagged HRP in the same buffer and then incubating at 25 °C for 24 h.

2.5. Dynamic Light Scattering (DLS) and C-Potential

DLS was measured using a Zetasizer Nano ZS (MALVERN) instrument with an incident He-Ne
laser (633 nm) at 25 °C. G(t) (correlation times of the scattered light intensities) were measured
several times and then the diffusion coefficient were calculated from the mean values of G(1). Using
the Stokes-Einstein equation, hydrodynamic diameters of the scattering particles were calculated.
Zeta potentials of f-annulus-Ni-NTA, His-tagged HRP, and their mixture at 25 pM in 10 mM Tris-HCl
buffer (pH 7.2) were measured at 25 °C using the same instrument with a DT1061 clear disposable
zeta cell.

2.6. Transmission Electron Microscopy (TEM)

Aliquots (3 puL) of the samples were applied to C-SMART Hydrophilic TEM grids(ALLIANCE
Biosystems Inc) for one min. Then, the droplet was removed using filter paper. Subsequently, the TEM
grids were placed into a staining aqueous solution, 2% phosphotungstic acid [Na3z(PW1,049) (H20)n]
(3 uL), for one min, and then removed. After the sample-loaded TEM grids were dried in vacuo,
they were observed using TEM (JEOL JEM 1400 Plus) using 80 kV accelerating voltage.

2.7. HRP Activity

The specific HRP activity was evaluated by a method adapted from the literature [46]. A solution
(350 uL) of 4-aminoantipyrine (25 mM) and phenol (17 mM) in 0.2 M potassium phosphate buffer (pH
7.0) and an aqueous solution (375 pL) of hydrogen peroxide (17 mM) in Milli-Q water was added to a
quartz cell (path length: 1 cm). After incubation for 4 min at 25 °C, the HRP-decorated artificial viral
capsid was added to the quartz cell (final concentration of HRP: 25 uM). The absorbance change was
measured at 510 nm over 250 s. The specific enzyme activity was calculated from the slope of the
absorbance change divided by the concentration of protein in mg/mL.
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3. Results

3.1. Construction of an Artificial Viral Capsid Modified with Ni-NTA at the Surface

To construct an artificial viral capsid modified with Ni-NTA at the surface, we designed
a Cys-containing B-annulus peptide at the C-terminal side (f-annulus-GGGCG peptide) which
was directed toward the exterior of the capsid [34,39,42]. The B-annulus-GGGCG peptide
(INHVGGTGGAIMAPVAVTRQLVGSGGGCG) was synthesized by standard Fmoc-protected
solid-phase method, purified by reversed-phase HPLC, and confirmed by MALDI-TOF-MS (m/z = 2637).
The Cys of the peptide was reacted with maleimido-C3-NTA to obtain -annulus peptide modified
with NTA at the C-terminus. After the f-annulus-NTA peptide was purified by reversed-phase HPLC
and analyzed by MALDI-TOF-MS (m/z = 3064), the peptide was complexed with NiCl, to obtain
p-annulus-Ni-NTA peptide, which was analyzed by MALDI-TOF-MS (m/z = 3123).

Size distribution obtained from DLS and TEM images of the solutions of the f-annulus-Ni-NTA
peptide in 10 mM Tris-HCI buffer (pH 7.2) revealed the formation of spherical assemblies of
approximately 50 nm in diameter (Figure 3). The diameter is comparable to the diameter of
unmodified [33] and modified artificial viral capsids [35,38-43] self-assembled from S-annulus peptide
derivatives, which indicates that Ni-NTA modification of the f-annulus peptide at the C-terminus
minimally affected the self-assembling behavior. The relatively broad size distribution observed by
DLS of 25 uM Ni-NTA-modified f-annulus peptide might be caused by relatively unstable assembly of
the peptide with dynamic equilibrium at a lower concentration. The concentration dependence on the
scattering intensity obtained from DLS showed that the critical aggregation concentration (CAC) of
the C-terminus-Ni-NTA modified f-annulus peptide in a Tris-HCl buffer at 25 °C was approximately
10 uM (Figure 4), which is comparable to the CAC of an unmodified f-annulus peptide (25 uM) [33],
but higher than that of the N-terminus-Ni-NTA modified f-annulus peptide (0.053 uM) [38].
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Figure 3. Size distributions obtained from Dynamic Light Scattering (DLS) at 25 °C and transmission
electron microscopy (TEM) images for solutions of (a) 25 uM and (b) 50 uM B-annulus peptide modified
with Ni-NTA at the C-terminus in a 10 mM Tris-HCl buffer (pH 7.2).
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Figure 4. Effect of the concentration of f-annulus peptide modified with Ni-NTA on scattering intensity
determined by DLS at 25 °C in a 10 mM Tris-HCI buffer (pH 7.2).

3.2. Preparation of His-Tagged HRP

Recombinant horseradish peroxidase with a C-terminal His6 tag (His-tagged HRP, Figure 2) was
expressed from the pET23a vector encoding His-tagged HRP in an E. coli BLR (DE3) expression system
as reported in the literature (Figure 5) [45]. For protein expression and purification, the transformants
were cultured in LB media, and expression of the plasmid was induced by IPTG. After the disruption
of cells by sonication, the inclusion body was solubilized in a buffer containing 6 M urea. The refolded
His-tagged apo-HRP was purified by a Ni-NTA column eluted with imidazole. The SDS-PAGE
revealed the formation and isolation of 32 kDa His-tagged apo-HRP (Figure 6a). His-tagged HRP was
formed by reconstruction of His-tagged apo-HRP with hemin and confirmed by MALDI-TOF-MS
(Figure 6b). The theoretical molecular mass of His-tagged HRP reconstructed with hemin is calculated
to be 35,768 Da based on the amino acids sequence. Considering the broad peak (35,029 Da) observed
by MALDI-TOF-MS, we decided that the mass was almost comparable to the theoretical value.
The UV-vis spectrum of hemin was red-shifted by reconstruction to produce a spectrum similar to
commercially available HRP (Figure 7), indicating a successful reconstruction of His-tagged HRP.
The slight difference of maximum absorption wavelength of His-tagged HRP (410 nm) and commercially
available HRP (403 nm) might be caused by difference of environment around hemin in HRP.

C-terminal
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@ IPTG 1) Cell disruption g 1) 1 mM Hemin N
N s <N i e 2
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expression ) (PH7.2) -
His-tagged His-tagged HRP
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Figure 5. Schematic illustration of the preparation of His-tagged HRP.
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Figure 6. (a) SDS-PAGE of His-tagged apo-HRP (Lane 2: 0.4 mg/mL, Lane 3: 0.2 mg/mL) and
(b) MALDI-TOF-MS of His-tagged HRP.
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Figure 7. UV-Vis spectra of (a) hemin (24 mM), (b) His-tagged HRP (0.2 mg/mL), and (c) commercially
available HRP (0.2 mg/mL) in 10 mM Tris-HCI buffer (pH 7.2).

3.3. Construction of HRP-Decorated Artificial Viral Capsid

The HRP-decorated artificial viral capsids were constructed by incubating solutions of the
p-annulus-Ni-NTA peptide with solutions of His-tagged HRP in 10 mM Tris-HCl buffer (pH 7.2) at
25 °C for 24 h. The DLS of the equimolar mixture of f-annulus-Ni-NTA peptide and His-tagged HRP
showed average hydrodynamic diameters of approximately 30 nm (Figure 8), which were smaller
than those of f-annulus-Ni-NTA peptide assemblies (Figure 3). It is probable that the spherical
structures were shrunk by complexation with His-tagged HRP on Ni-NTA-modified artificial viral
capsids. TEM images of the aqueous solutions showed the formation of spherical assemblies with
diameters of 30-90 nm (Figure 8). To confirm decoration on the exterior of Ni-NTA modified artificial
viral capsids by HRP, we measured the (-potentials of the Ni-NTA-modified capsid, His-tagged
HRP, and their equimolar mixture at pH 7.2 (Figure 9). The (-potential of the Ni-NTA-modified
capsid was —13.9 + 5.3 mV, whereas that of the equimolar mixture of Ni-NTA-modified capsid and
His-tagged HRP was —21.0 + 5.8 mV, which is close to that of His-tagged HRP alone, —24.6 + 4.5 mV.
These results indicate that His-tagged HRP was decorated on the exterior of the Ni-NTA-modified
artificial viral capsid.

The specific enzyme activity of the HRP-decorated artificial viral capsid was evaluated by
colorimetric assay using 4-aminoantipyrine, phenol, and hydrogen peroxide as substrates [46].
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The specific enzyme activity of intact His-tagged HRP in potassium phosphate buffer (pH 7.0)
at 25 °C was 1.63 Units/mg, whereas that of HRP-decorated artificial viral capsid was 0.238 Units/mg
under the same conditions (Figure 10). This decline of HRP activity might be caused by crowding of
HRP on the capsid surface and concomitant structural changes. This result is in contrast to the retained
activity of RNase S-decorated artificial viral capsids [43].
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Figure 8. Size distributions obtained from DLS at 25 °C and TEM images for solutions of (a) 50 tM
Ni-NTA modified p-annulus peptide and 50 uM His-tagged HRP, (b) 25 uM Ni-NTA modified f-annulus
peptide and 25 uM His-tagged HRP in 10 mM Tris-HCl buffer (pH 7.2).
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Figure 9. (-Potentials of (a) the assembly of 25 uM Ni-NTA modified f-annulus peptide, (b) 25 uM
His-tagged HRP, and (c) their 1:1 mixture in 10 mM Tris-HCl buffer (pH 7.2).
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Figure 10. Time courses of absorbance increase at 510 nm due to the enzymatic reaction of (a) His-tagged
HRP (11.4 uM) and (b) HRP-decorated artificial viral capsid (25 uM) using 4-aminoantipyrine, phenol,
and hydrogen peroxide as substrates in the phosphate buffer (pH 7.0) at 25 °C.

4. Discussion

We demonstrated that f-annulus peptide bearing Ni-NTA at the C-terminus self-assembled
into artificial viral capsids and complexed with recombinant His-tagged HRP. The HRP-decorated
artificial viral capsids with sizes of 30-90 nm showed peroxidase activity, but it was lower than that
of intact His-tagged HRP. Nolte and coworkers also reported that the activity of HRP-polystyrene
assembly was significantly decreased compared to that of intact HRP [23]. Highly dense packing of
HRP on the surface of nano-assembly might result in partial thermal denaturation to decrease the
activity. However, Morii and coworkers reported a surprising enhancement of activity of dense-packed
assembly of carbonic anhydrase on DNA origami scaffolds [47]. They proposed that the entropic
force of water increases local substrate or cofactor concentration within the domain confined between
enzyme surfaces, thus accelerating the reaction. Thus, we believe that rational design of proper spatial
arrangement of enzymes on the surface of an artificial viral capsid will enable the creation of highly
active enzyme-decorated capsids.

Compared to artificial protein assemblies previously reported [27-32], the strategy presented
is simple and general, because it can be constructed from only a 29-residue peptide and easily
available His-tagged proteins. Because it can be modified with multiple types of enzymes,
the HRP-decorated artificial viral capsids would be applied to a platform for cascade reaction
systems such as glucoseoxidase-peroxidase cascade system. Therefore, it can be used to decorate other
His-tagged proteins onto artificial viral capsids. We envisage the construction of artificial viral capsids
decorated with various proteins, which may be useful as a platform for vaccines and membraneless
organelles such as artificial carboxysome.

5. Conclusions

We succeeded in constructing artificial spherical assembly decorated with active HRP via
interactions between His-tagged HRP and Ni-NTA-modified f-annulus peptide. The DLS, TEM,
and (-potential of the assembly revealed the formation of HRP-decorated capsids of 30-90 nm in
diameter. Although the peroxidase activity of the assembly was decreased compared to that of intact
His-tagged HRP, there is room for improvement of molecular design of enzyme-decorated capsid.
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