非線形計画法を用いた多自由度構造物の粘性ダンパーの最適設計法

Optimal viscous damper design method for multi-degree-of-freedom structures by use of nonlinear programming algorithm

小林真也 *, 小野祐輔 **, 谷口朋代 ***, 向坊恭介 [†] Shinya Kobayashi, Yusuke Ono, Tomoyo Taniguchi, Kyosuke Mukaibo

*修(工),株式会社大隆設計(〒 693-0056 島根県出雲市江田町 40-5)

**博(工),鳥取大学大学院准教授,工学研究科(〒680-8552鳥取県鳥取市湖山町南四丁目101)

***博(工),鳥取大学大学院教授,工学研究科(〒680-8552鳥取県鳥取市湖山町南四丁目101)

*博(工),鳥取大学大学院助教,工学研究科(〒680-8552鳥取県鳥取市湖山町南四丁目101)

A design method for achieving optimal viscous damper arrangement in multi-degreeof-freedom structure is presented in this paper. The optimal damper arrangement is realized by minimizing the object function which is the sum of the additional damper coefficients under constraints to be provided by allowable response displacement of each story. Giving the maximum response displacement of each story as the function of the additional viscous damper coefficients evaluated by use of the SRSS method enables to apply the nonlinear programming algorithm for solving the minimizing problem. The optimal damper arrangements for two sample structure models under the action of horizontal ground acceleration are implemented by the proposed design method and their reasonability is thoroughly discussed.

Key Words: optimal damper design method, SRSS method, MDOF structure, nonlinear programing

キーワード:ダンパー最適設計法,SRSS法,多自由度構造物,非線形計画法

1. はじめに

近年,国内外を問わず,既設構造物の耐震安全性の 照査とその結果に基づく耐震補強が盛んに行われてい る.新設構造物を対象とした場合には,設計諸量の自 由度が高いため,多様な設計手法を用いて耐震基準を 満たす設計を行うことができるが.一方で,既存構造 物に対して耐震補強を行う場合には,新設構造物と比 べ設計者が決定できる設計諸量の自由度は格段に減少 し,適用し得る対策に制約が多くなる.こうした場合, 粘性ダンパーによる既設構造物の耐震補強は,有効な 選択肢の一つとなっている.付与する粘性ダンパーの 減衰量や配置は,耐震性能の向上とコストの低減の両 面を考慮して最適なものが決定される.

ダンパーの最適配置に関する既往の研究は数多くあ る. Zhang and Soong¹⁾は,彼らが最適配置指数(optimal location index)と呼んだパラメータの値が大きい層か ら粘性ダンパーを設置していく手法を提案した. Tsuji and Nakamura²⁾は,層間変形量と総減衰量を制約条件 とし,各層の剛性の総和を最小化する粘性減衰の配置 を求める手法を提案した. Wu and Ou³⁾は,層に与える 減衰量の上限値と下限値を制約条件とし,層の最大応

[†] 連絡著者/ Corresponding author

答変位の総和を最小化する減衰量と配置を繰り返し計 算によって求める手法を提案した.以上は,ある特定 の入力に対する構造物の応答を評価基準としている.

入力によらない一般的な手法として,Takewaki⁴⁾は, 設置する粘性ダンパーの減衰係数の総和を制約条件とし て,離散化した伝達関数の振幅の総和を最小化すること で,粘性ダンパーの最適配置を求める手法を提案した. Lang et al.⁵⁾らは,周波数応答関数(output frequency response function)を用いて多自由度構造物における非 線形粘性ダンパーの最適配置を求める手法を提案した.

これらの手法では、定式化された最適問題に対して 最急勾配法等の解析的な手法を適用することで解を求 めている.しかしながら、解析的な手法では目的関数 や制約条件により最適解が得られないことが珍しくな い.そこで、高速な電子計算機が利用できることを背 景とした直接的な最適化手法を用いたものが多数提案 されている.代表的なものとして、Farhat et al.⁶⁾ によ る遺伝的アルゴリズム (GA)を適用したもの、Sonmez et al.⁷⁾ の Artificial bee colony アルゴリズムを適用した もの等が挙げられる.

実際の耐震補強設計では、応答スペクトルの形で入 力地震動が与えられる場合が多い.また、特に設計の初 期段階では、多少大雑把であっても最小限の計算コス

E-mail: kmukaibo@cv.tottori-u.ac.jp

図-1 多自由度構造物モデル

トでダンパーの最適配置が把握できる手法が望ましい. そこで、本稿では小さな計算コストにより耐震補強 として付与する粘性ダンパーの減衰係数の総量を最小 化する、最適な配置を決定する手法を提案する.すな わち、構造物の任意の自由度に許容される最大変位を 制約条件とし、付与する減衰量の総和を非線形計画法 により最小化することで、粘性ダンパーの最適配置を 決定する.提案する手法によれば、入力地震動が応答 スペクトルで与えられたとき、既設構造物の耐震補強 として粘性ダンパーを付与する場合に、少ない計算コ ストで、構造物の振動特性に応じた粘性ダンパーの付 加量と配置を合理的に決定できることを以下に示す.

2. 最大応答変位の推定法

以下,本稿では簡単にするため図-1 に示したような 水平方向の自由度のみを持つ*n*自由度の多層構造物を 用いて説明する.

2.1 運動方程式とその対角化

第*i*層の質量を*m_i*,減衰係数を*c_i*,剛性を*k_i*とすると,この多層構造物の運動方程式は次式のようになる.

$$[M] \{ \ddot{x} \} + [C] \{ \dot{x} \} + [K] \{ x \} = -[M] \{ 1 \} \ddot{z}$$
(1)

ここに {1} は全ての成分が1 であるベクトル, żは入力 地震動の加速度である. {*x*} は応答変位ベクトル, [*M*], [*C*], [*K*] は質量マトリクス, 減衰マトリクス, 剛性マ トリクスである.式(1)の減衰マトリクスが比例減衰 マトリクスである場合, モーダルマトリクス [Φ] によ り対角化できる.

$$[\Phi]^{T} [M] [\Phi] \{\ddot{q}\} + [\Phi]^{T} [C] [\Phi] \{\dot{q}\} + [\Phi]^{T} [K] [\Phi] \{q\}$$

= - [\Phi]^{T} [M] \{1\}\Z (2)

ここに {q} はモード変位ベクトルである.モーダルマ トリクス [Ф] は,モードベクトル

$$\{\phi^{(s)}\} = \{\phi_1^{(s)}, \phi_2^{(s)}, \dots, \phi_n^{(s)}\}^T$$
 (3)

を用いて次のように表される.

$$[\Phi] = \left[\left\{ \phi^{(1)} \right\} \quad \left\{ \phi^{(2)} \right\} \quad \dots \quad \left\{ \phi^{(n)} \right\} \right] \tag{4}$$

ここで, 添字 (s) は s 次モードに対応する値であること を示している.

式 (2) 中の $[\Phi]^T[M][\Phi]$, $[\Phi]^T[C][\Phi]$, $[\Phi]^T[K][\Phi]$ は 対角化されており,対角成分をそれぞれ $M^{(s)}$, $C^{(s)}$, $K^{(s)}$ とすると,

$$\boldsymbol{M}^{(s)} = \left\{ \boldsymbol{\phi}^{(s)} \right\}^{T} \left[\boldsymbol{M} \right] \left\{ \boldsymbol{\phi}^{(s)} \right\}$$
(5)

$$C^{(s)} = \left\{\phi^{(s)}\right\}^T [C] \left\{\phi^{(s)}\right\}$$
(6)

$$K^{(s)} = \left\{\phi^{(s)}\right\}^{T} \left[K\right] \left\{\phi^{(s)}\right\}$$
(7)

であり、それぞれ s 次のモード質量、モード減衰係数、 モード剛性と呼ぶ、本稿では、減衰係数 c_i を独立した パラメータとして取り扱うため、全体系の減衰マトリ クスが比例減衰になるとは限らないが、非対角項を無 視することで対角化成分のみを取り扱うことにする.

s次のモード固有円振動数を $\omega^{(s)}$,s次のモード減衰 定数を $h^{(s)}$ と表すことにすると,

$$\omega^{(s)} = \sqrt{\frac{K^{(s)}}{M^{(s)}}} \tag{8}$$

$$C^{(s)} = 2h^{(s)}M^{(s)}\omega^{(s)}$$
(9)

なる関係を持つ.

2.2 応答スペクトルによるモーダルアナリシス

多層構造物の第 i 層の応答変位の時刻歴 $x_i(t)$ は, s 次 モードの応答変位の時刻歴 $q^{(s)}(t)$ を用いて次式のよう に求められる.

$$x_i(t) = \sum_{s=1}^n \phi_i^{(s)} \beta^{(s)} q^{(s)}(t)$$
(10)

 $\beta^{(s)}$ はs次モードの刺激係数であり,

$$\beta^{(s)} = \frac{\left\{\phi^{(s)}\right\}^{T} [M] \{1\}}{M^{(s)}}$$
(11)

である.

ここで、 $q^{(s)}(t)$ の最大値 $|q^{(s)}(t)|_{max}$ は、入力地震動の 変位応答スペクトル $S_D(T,h)$ が与えられれば、

$$|q^{(s)}(t)|_{max} = S_D(T^{(s)}, h^{(s)})$$
 (12)

で得られる.

第*i*層の最大応答変位 $|x_i(t)|_{max}$ の上限値は、式(10)に 式(12)の値を代入することで得られる.ただし、各次 モードの最大応答変位が同時刻に生じることは考えに くいため、通常よく用いられる SRSS 法⁸⁾(Square Root of Sum of Squares)を用いて、 $|x_i(t)|_{max}$ は、

$$|x_i(t)|_{max} \simeq \sqrt{\sum_{s=1}^n \left\{ \phi_i^{(s)} \beta^{(s)} S_D(T^{(s)}, h^{(s)}) \right\}^2}$$
(13)

として得られる.

実際には,入力地震動は 5% 減衰の加速度応答スペクトルとして与えられる場合が多い. 任意の減衰定数 hに対する加速度応答スペクトル S_A(T,h)は,5% 減衰 の加速度応答スペクトル S_A(T,0.05)を用いて,

$$S_A(T,h) \simeq C_d(h) S_A(T,0.05)$$
 (14)

と近似できる. $C_d(h)$ は補正係数で次式で与えられる⁹.

$$C_d(h) = \frac{1.5}{40h+1} + 0.5 \quad (0.5 \le C_d(h) \le 2) \tag{15}$$

一般に変位応答スペクトル $S_D(T,h)$ と加速度応答スペクトル $S_A(T,h)$ の間には、近似的に、

$$\left(\frac{2\pi}{T}\right)^2 S_D(T,h) \simeq S_A(T,h) \tag{16}$$

の関係が成り立つため、加速度応答スペクトルに対する減衰定数の補正係数 $C_d(h)$ は、変位応答スペクトルに対しても適用でき、次式の関係が得られる.

$$S_D(T,h) \simeq C_d(h) S_D(T,0.05)$$
 (17)

これより,式(13)を,

$$|x_i(t)|_{max} \simeq \sqrt{\sum_{s=1}^n \left\{ \phi_i^{(s)} \beta^{(s)} C_d(h^{(s)}) S_D(T^{(s)}, 0.05) \right\}^2}$$
(18)

と書き換えることができる.

以下,本稿では,第*i*層の最大応答変位 |*x_i(t*)|_{max}を式(13)で求める場合を SRSS 法,式(18)で求める場合 を SRSS-Cd 法と呼び区別する.

3. 非線形計画法による最適解の決定

本稿では,各層に与える減衰係数 *c*_iの総和を目的関数とし,その最小化問題を考える.目的関数 *f* は各層の減衰係数 *c*_iの関数として,

$$f(h_i) = \sum_{i=1}^{n} c_i$$
 (19)

と表せる.一方,制約条件は,次のように与える.

$$|x_i|_a \ge |x_i|_{max} \tag{20}$$

これは,任意の層 *i* の最大応答変位 |*x*_{*i*|*max*} がその許容 値 |*x*_{*i*|*a*} 以下となる条件である.この式に式 (18) を代入 することにより,

$$|x_i|_a \ge \sqrt{\sum_{s=1}^n \left\{ \phi_i^{(s)} \beta^{(s)} C_d(h^{(s)}) S_D(T^{(s)}, 0.05) \right\}^2}$$
(21)

を得る.また,減衰係数 *c*_iの取り得る値を制約条件に加える.すなわち,

$$c_i^{\min} \le c_i \le c_i^{\max} \quad (i = 1, \dots, n)$$
(22)

表—1 解析モアル			
	(a) 10 層モ・	デル	
層	質量 (kg)	剛性 (N/m ²)	
1 – 10	1.0×10^{5}	1.5×10^{8}	
(b) 20 層モデル			
層	質量 (kg)	剛性 (N/m ²)	
1 – 10	1.0×10^{5}	1.7×10^{8}	
11 - 20	1.0×10^{5}	8.5×10^{7}	
11 20	1.0 × 10	0.5×10	

である. ここで, *c_i^{max}*, *c_i^{min}* は第*i*層の持ち得る減衰係 数の最大値と最小値である.

まとめると以上の問題は次のように定式化できる. min

$$\sum_{i=1}^{n} c_i \tag{23}$$

s. t.

$$|x_i|_a \ge \sqrt{\sum_{s=1}^n \left\{ \phi_i^{(s)} \beta^{(s)} C_d(h^{(s)}) S_D(T^{(s)}, 0.05) \right\}^2}$$
(24)

$$\sum_{i}^{min} \le c_i \le c_i^{max} \quad (i = 1, \dots, n)$$

$$(25)$$

以上のように設定した最適化問題は、一般的な不等式制 約条件を持つ目的関数の最小化問題となっており、種々 の解法で最適解を求めることができる.本稿では、逐 次2次計画法¹⁰⁾を用いて最適解を求める.

4. 解析例

4.1 解析モデル

提案手法の妥当性を検証することを目的として解析 例を示す.取り扱う多層構造物の解析モデルは10層と 20層の二種類とする.それぞれのモデルについて,各 層ごとに質量と剛性を表-1のように与える.これらの パラメータは,10層,20層モデルの固有周期がそれぞ れ約1秒,約2秒になるよう設定した.10層モデルは 全ての層で質量,剛性が一定である.一方,20層モデ ルでは質量は全ての層で一定であるが,11層から20層 の剛性が1層から10層までの50%となっている.それ ぞれの解析モデルの固有円振動数と固有周期を表-2に 示す.10層モデルの1次モードの固有周期は1.085秒, 20層モデルは2.185秒である.

4.2 入力地震動

ここでは、道路橋示方書に示されたレベル2地震動 (タイプII)の応答スペクトルを入力地震動とし、対応 する時刻歴波形として日本道路協会で公開されている 神戸海洋気象台地盤上NS成分(II-I-1)を用いる¹¹⁾.入 力地震波の加速度時刻歴および加速度応答スペクトル を図-2及び図-3に示す.この入力地震動の変位応答ス

表-2 解析モデルの固有円振動数ωと固有周期 Τ

(a) 10 層モデル			
モード	固有円振動数 ω(Hz)	固有周期 T(s)	
1	5.789	1.085	
2	17.236	0.365	
3	28.299	0.222	
4	38.730	0.162	
5	48.295	0.130	
6	56.782	0.111	
7	64.000	0.098	
8	69.789	0.090	
9	74.018	0.085	
10	76.595	0.082	
	(b) 20 層モデル		
モード	固有円振動数 ω(Hz)	固有周期 T(s)	
1	2.876	2.185	
2	7.622	0.824	
3	12.951	0.485	
4	18.183	0.346	
5	22.668	0.277	
6	28.026	0.224	
7	32.224	0.195	
8	36.644	0.171	
9	41.231	0.152	
10	44.447	0.141	
11	48.232	0.130	
12	51.799	0.121	
13	53.936	0.116	
14	55.937	0.112	
15	57.672	0.109	
16	61.743	0.102	
17	68.812	0.091	
18	74.643	0.084	
19	78.945	0.080	
20	81.577	0.077	

ペクトルについて,式(15)の $C_d(h)$ 値による補正の 効果を図-4に示す.図中, $S_D(0.05)$ は5%減衰の変位 応答スペクトルである. $C_d(0.08) * S_D(0.05)$ は5%減衰 の応答スペクトルに補正係数 $C_d(0.08)$ を乗じて求めた 8%減衰の応答スペクトルであり,1自由度系の応答解 析から求めた応答スペクトル $S_D(0.08)$ とよく一致して いる.一方,補正係数 $C_d(0.02)$ を乗じて求めた2%減 衰の応答スペクトル $C_d(0.02) * S_D(0.05)$ では,1自由度 系の応答解析から求めた応答スペクトル $S_D(0.05)$ では,1自由度 系の応答解析から求めた応答スペクトル $S_D(0.02)$ との 差異が,特に約2秒以上の周期帯で目立つ.

以上のことから, SRSS-Cd 法では, 固有周期が長く, 減衰定数が小さくなると応答の推定精度が悪化する傾 向があると考えられる. SRSS-Cd 法による最大応答変 位の推定精度は,本稿で提示する最適化手法によって 得られる結果に直接的な影響を及ぼすことから, C_d(h) の評価について今後の改善が求められる.

4.3 応答変位の推定精度の検証

本稿では, s次モードの変位応答スペクトルに s次 モードの C_d 値を乗じることで, s次モードの応答変位

図-2 入力地震動の加速度時刻歴

図-3 入力地震動の加速度応答スペクトル

図-4 変位応答スペクトルの C_d(h) による補正

が抑制される効果を表した後に,式(18)で与えられる SRSS-Cd 法によって第 *i* 層の応答変位の最大値 $|x_i|_{max}$ を推定している.そこで,SRSS-Cd 法に潜在的に内在 する各層の応答変位の推定の誤差を確認するため,先 に示した解析モデルと入力地震動に対して,FFTを用 いた周波数領域における時刻歴応答解析⁸⁾との比較を 図–5 に示す.ここで,各層の減衰性能を減衰係数 c_i の 代わりに減衰定数 h_i を用いて表すことにする. h_i は,

$$h_i = \frac{c_i}{2\omega_i m_i} \tag{26}$$

図-5 SRSS法, SRSS-Cd法, 時刻歴応答解析(TSA)の 比較

と定義される. *m_i* は第 *i* 層の質量, *ω_i* はこの層を独立 した1自由度系とみなしたときの1次固有円振動数で あり, 第 *i* 層の剛性 *k_i* を用いて,

$$\omega_i^2 = \frac{k_i}{m_i} \tag{27}$$

である.図–5の解析では,全ての層に減衰定数0.05を 与えている.

10 層モデルについて比較した図–5(a) によると,全 ての層において SRSS 法が時刻歴応答解析法 (TSA) と 良い一致を示すのに対して,SRSS-Cd 法では上層にな るほど違いが大きくなっている.一方,20 層モデルで は 1 層から 10 層までは SRSS-Cd 法が SRSS 法よりも 時刻歴応答解析法に近い結果となっているものの,11 層から 20 層では SRSS 法の方が良い結果が得られてい る.20 層モデルで中間層で剛性が変化していることが

表-3 最適化により得られた各層の減衰定数

	減衰定数		
層	10 層モデル	20 層モデル	
1	0.1500	0.1500	
2	0.1461	0.1500	
3	0.0500	0.1500	
4	0.0500	0.0804	
5	0.0500	0.0500	
6	0.0500	0.0500	
7	0.0500	0.0500	
8	0.0500	0.0500	
9	0.0500	0.0500	
10	0.0500	0.0500	
11	-	0.1500	
12	-	0.1500	
13	-	0.1500	
14	-	0.1500	
15	-	0.1500	
16	-	0.0500	
17	-	0.0500	
18		0.0500	
19	-	0.0500	
20		0.0500	

推定精度に影響していると考えられ,対象とする多自 由度系の剛性分布および質量分布によっては,最大応 答変位の推定精度が落ちることを示している.

この推定誤差は、多自由度系の最大応答を各次モードの最大応答の二乗和平方根で略算的に推定しようとする SRSS 法に起因するものである.さらに,本稿で提案する最適化手法では,SRSS-Cd 法によって各層の最大応答変位を求めているため,Cd 値による補正に関する誤差も含まれていることになる.本提案手法は,解析コストを抑えた最適化手法を目的としているが,今後,精度向上を目指すために検討が必要な課題と考える.

4.4 最適化の実行結果

以上の解析モデルと入力地震動に対して,付与する 粘性ダンパーの最適配置を求めた解析例を以下に示す. 補強としての粘性ダンパーを全く付与していない状況 として,全ての層の減衰定数 h_iを 0.05 とした場合を 考える.このとき,SRSS-Cd 法によって得られる各層 の最大応答変位の 90%を許容最大応答変位とし,全て の層で許容最大応答変位を満たすという制約のもとで, 粘性ダンパーの付与による各層の減衰係数の総和が最 小となるものを最適配置とする.h_iの制約条件は,

$$0.05 \le h_i \le 0.15$$
 $(i = 1, \dots, n)$ (28)

とする.ある層に最適な減衰定数が0.07と得られた場合には、その層に対して減衰定数が0.02増加するように粘性ダンパーを付与すればよいことを意味する.

以上の条件のもとで、本稿の提案手法によって得られた付与すべき減衰定数を表-3に示す.10層モデルでは、第1層に上限値である0.15まで、第2層には0.1461

図-6 最適粘性ダンパー配置による最大応答変位

まで減衰を付与し、第3層以上の層では減衰を付与し ないという結果が得られた.一方、20層モデルに対し ては、第1層から第3層までの減衰を0.15、第4層を 0.0804とし、第11層から第15層までの減衰を0.15と する結果が得られた.これらの結果が最大応答変位に 関する制約条件を満足していることを確認したものが 図-6である.全層に5%の減衰を与えて求めた各層の 最大応答変位 (original)の90%である制約条件 (target) に対して、表-3に示した減衰定数を各層に与えて、式 (18)から求めた各層の最大応答変位 (optimum) は良く 一致しており、合理的な減衰の配置が実現されている.

4.5 考察

ここでは前項で得られた粘性ダンパーの最適配置の 合理性について考察を加える.式(18)から明らかなよ

表-4 対象とした解析モデルと地震動による $\alpha_i^{(s)}$ の値

4.4	()	a) 10 層モ	デル	
層	1次	2次	3次	4次
1	5.4933	1.1733	0.3414	0.1275
2	10.8639	2.1143	0.5006	0.1275
3	15.9917	2.6365	0.3925	0.0000
4	20.7624	2.6365	0.0748	0.1275
5	25.0693	2.1143	0.2828	0.1275
6	28.8161	1.1733	0.4894	0.0000
7	31.9193	0.0000	0.4347	0.1275
8	34.3094	1.1733	0.1480	0.1275
9	35.9331	2.1143	0.2178	0.0000
10	36.7542	2.6365	0.4673	0.1275
層	1次	2次	3次	4次
1	2.8090	2.4331	0.7497	0.5407
2	5.6043	4.7830	1.4255	0.9763
3	8.3724	6.9695	1.9606	1.2220
4	11.0997	8.9177	2.3022	1.2300
5	13.7731	10.5612	2.4167	0.9988
6	16.3795	11.8437	2.2928	0.5734
7	18.9061	12.7214	1.9426	0.0364
8	21.3409	13.1643	1.4008	0.5076
9	23.6718	13.1573	0.7207	0.9529
10	25.8876	12.7006	0.0305	1.2129
11	30.0673	10.9191	1.5268	1.2611
12	33.9545	8.3912	2.7218	0.8188
13	37.5114	5.2897	3.3798	0.0580
14	40.7034	1.8266	3.3707	0.7254
15	43.4994	1.7613	2.6965	1.2266
16	45.8722	5.2289	1.4902	1.2507
17	47.7988	8.3390	0.0102	0.7883
18	49.2603	10.8791	1.5085	0.0193
19	50.2427	12.6756	2.7092	0.7572
20	50.7363	13.6056	3.3753	1.2392

うに,最適化の過程において SRSS-Cd 法による最大応 答推定で変化するパラメータは $C_d(h^{(s)})$ のみである.一 方,係数 $\alpha_i^{(s)}$ を

$$\alpha_i^{(s)} = \phi_i^{(s)} \beta^{(s)} S_D(T(s), 0.05)$$
⁽²⁹⁾

と定義すると、同じ解析モデルと入力地震動に対して $\alpha_i^{(s)}$ は一定である.この $\alpha_i^{(s)}$ は各層の最大応答変位に 及ぼす各モードの影響の大きさを定量的に表しており、 各層について $\alpha_i^{(s)}$ の大きいモードから順次減衰を与え ることで、効率的に最大応答変位を低減できることを 示唆している.最適化の対象とした解析モデルと入力 地震動に対して $\alpha_i^{(s)}$ の値を計算し、4次モードまでを 示したものが表-4である.いずれの解析モデルにおい ても、全ての層で1次モードの値が最大となっており、 1次モードの減衰を増加することが、それぞれの層の 最大応答変位を最も効率良く低減させることがわかる. 次に、第*i*層の減衰定数 h_i がs次モードの減衰定数 $h^{(s)}$ に及ぼす影響について定量的な評価を行う.ここで、s次モードの減衰定数 $h^{(s)}$ は各層の減衰定数 h_i を用いて 次式のように表せる.

$$h^{(s)} = \sum_{i=1}^{N} \frac{\left(\phi_i^{(s)} - \phi_{i-1}^{(s)}\right)^2 \omega_i m_i}{\omega^{(s)} M^{(s)}} \cdot h_i = \sum_{i=1}^{N} \gamma_i^{(s)} \cdot h_i \qquad (30)$$

ただし $\phi_0^{(s)} = 0$ とする. $\gamma_i^{(s)}$ は各層の減衰定数 h_i の s 次モードの減衰定数 $h^{(s)}$ への寄与度を表す係数となり, $\gamma_i^{(s)}$ の値の大きい層から順に減衰定数 h_i を増加するこ とで, 効率的に s 次モードの減衰定数 $h^{(s)}$ の増加を実 現できることを意味する.

最適化の対象とした解析モデルについて、 $\gamma_i^{(s)}$ の値を 4次モードまで求めたものが表-5である.ここで、先 の $\alpha_i^{(s)}$ を用いた検討で、全ての層において1次モード の減衰を増加させることが効率的であることが示され たため、表-5では1次モードのみに着目する.

10 層モデルについてみると, $\gamma_i^{(1)}$ の値は大きいもの から順に第1層で0.0283,第2層で0.0271,第3層で 0.0247 となっている. 表-3 に示した最適化の実行結果 によると、10層モデルに対しては第1層で制約の上限 である 0.1500 まで, 第2層については 0.1461 まで減衰 定数を増大させており、 $\alpha_i^{(s)}$ と $\gamma_i^{(s)}$ を用いた考察と調和 的な結果となっている.一方,20層モデルについては, 減衰定数を増大するのは γ⁽¹⁾ の値が大きい第 1 層から 第4層,第11層から第15層となっている.これらの 層は,第 15 層を除き $\gamma_i^{(1)}$ の値の大きいもの上位に対し て減衰の付与が行われている.第15層については、減 衰の付与が行われない第5層から第7層よりも $\gamma_i^{(1)}$ の 値が小さいにも関わらず,減衰が付与されている.こ こで,2次モードに着目すると第15層のγ⁽¹⁾の値が最 も大きいことが見て取れる.したがって,第15層への 減衰付与は、2次モードの影響が現れていると考えら れる.

以上の考察より,本稿で提案した手法は,入力地震 動が応答スペクトルで与えられたとき,構造物の振動 特性に応じた粘性ダンパーの付加量と配置を合理的に 決定できることを確認した.

5. まとめ

既設の多自由度構造物を対象として粘性ダンパーに よる耐震補強を実施することを想定し、与えられた入 力地震動の応答スペクトルに対する各層の最大応答変 位を制約条件とし、付与する減衰量の総和を最小化す る手法を提案した.本稿で提案した手法では、各層の 最大応答変位の算定に応答スペクトルの減衰定数によ る補正係数を用いた SRSS-Cd 法を用いることで、非線 形計画法が適用可能な最適化問題としている.解析例 として、10層と20層の二種類の多層構造モデルに対 して、粘性ダンパーの配置と付与する減衰量の最適解 を求めた.得られた最適解について、解析モデルの応 答特性に基づく考察から十分に合理的なものであるこ とを示した.なお、本提案手法は、2章および3章の

表-5 対象とした解析モデルによる $\gamma_i^{(s)}$ の値

(a) 10 層モデル				
層	1次	2 次	3次	4次
1	0.0283	0.0806	0.1206	0.1429
2	0.0271	0.0518	0.0262	0.0000
3	0.0247	0.0160	0.0121	0.1429
4	0.0214	0.0000	0.1044	0.1429
5	0.0174	0.0160	0.1323	0.0000
6	0.0132	0.0518	0.0442	0.1429
7	0.0090	0.0806	0.0031	0.1429
8	0.0054	0.0806	0.0851	0.0000
9	0.0025	0.0518	0.1384	0.1429
10	0.0006	0.0160	0.0644	0.1429
	(b) 20 層モ	デル	
層	1次	2次	3次	4次
1	0.0052	0.0172	0.0194	0.0394
2	0.0052	0.0160	0.0158	0.0256
3	0.0051	0.0139	0.0099	0.0081
4	0.0049	0.0110	0.0040	0.0000
5	0.0047	0.0078	0.0005	0.0072
6	0.0045	0.0048	0.0005	0.0244
7	0.0042	0.0022	0.0042	0.0389
8	0.0039	0.0006	0.0101	0.0399
9	0.0036	0.0000	0.0160	0.0268
10	0.0032	0.0006	0.0195	0.0091
11	0.0082	0.0065	0.0547	0.0002
12	0.0071	0.0131	0.0349	0.0187
13	0.0059	0.0197	0.0106	0.0552
14	0.0048	0.0246	0.0000	0.0585
15	0.0037	0.0264	0.0111	0.0240
16	0.0026	0.0247	0.0356	0.0001
17	0.0017	0.0199	0.0550	0.0204
18	0.0010	0.0132	0.0549	0.0564
19	0.0005	0.0066	0.0352	0.0575
20	0.0001	0.0018	0.0108	0.0222

定式化から明らかなように,式(1)のような運動方程 式でモデル化可能であれば,水平2成分,鉛直1成分 の自由度を持つ一般的な多自由度構造物に対しても適 用可能な手法となっている.

付録 | 式 (30)の導出

N 個の質点を持つ多自由度系が M 個の粘性ダンパー を持つとする.全体系の減衰マトリクスを [C] とする と,これらは各粘性ダンパーの減衰マトリクス [C_k] を 足し合わせることにより,次式のように表せる.

$$[C] = \sum_{k=1}^{M} [C_k]$$
(I.1)

いま,マトリクス [*A*] の*i*行 *j*列の成分を A(i, j)のように表すことにする.粘性ダンパー *a* が接続されている質点を p_a , q_a , 減衰係数を c_a とすると,この粘性ダンパーの減衰マトリクス [C_a] の非零成分は,

$$C_a(p_a, p_a) = c_a \tag{I.2}$$

$$C_a(p_a, q_a) = -c_a \tag{I.3}$$

$$C_a(q_a, p_a) = -c_a \tag{I.4}$$

$$C_a(q_a, q_a) = c_a \tag{I.5}$$

のみである.

一方,式(6),(I.1)よりs次のモード減衰係数は次のように表せる.

$$C^{(s)} = \left\{ \phi^{(s)} \right\}^{T} [C] \left\{ \phi^{(s)} \right\}$$
(I.6)

$$= \left\{ \phi^{(s)} \right\}^T \left\{ \sum_{a=1}^M \left[C_a \right] \right\} \left\{ \phi^{(s)} \right\}$$
(I.7)

ここで、マトリクス [C_a] の成分のうち、粘性ダンパー a が関係しないものは零であることに注意すると、

$$\left\{\phi^{(s)}\right\}^{T} \left[C_{a}\right] \left\{\phi^{(s)}\right\} \tag{I.8}$$

$$= \left\{ \begin{array}{c} \phi_{p_a}^{(s)} \\ \phi_{q_a}^{(s)} \end{array} \right\}^{T} \left[\begin{array}{c} c_a & -c_a \\ -c_a & c_a \end{array} \right] \left\{ \begin{array}{c} \phi_{p_a}^{(s)} \\ \phi_{q_a}^{(s)} \end{array} \right\}$$
(I.9)

$$= \left(\phi_{p_a}^{(s)} - \phi_{q_a}^{(s)}\right)^2 c_a$$
 (I.10)

を得る.したがって、s次のモード減衰係数は、

$$C^{(s)} = \sum_{a=1}^{M} \left(\phi_{p_a}^{(s)} - \phi_{q_a}^{(c)} \right)^2 c_a \tag{I.11}$$

と表せる.いま,図-1に示したように,高さ方向のみ に質点が積み重なり,下から順に自由度が番号付けら れている解析モデルについて,水平方向の応答のみを 考えることにする.このとき,粘性ダンパーは連続した 自由度番号を持つ上下の2質点に接続されるので,式 (I.11)は,

$$C^{(s)} = \sum_{a=1}^{M} \left(\phi_a^{(s)} - \phi_{a-1}^{(c)} \right)^2 c_a \tag{I.12}$$

と書き改めることができる.ただし、 $\phi_0^{(s)} = 0$ とする. ここに、 $C^{(s)} = 2h^{(s)}\omega^{(s)}M^{(s)}$ 、 $c_a = 2h_a\omega_a m_a$ を代入すると、

$$h^{(s)} = \sum_{a=1}^{M} \frac{\left(\phi_a^{(s)} - \phi_{a-1}^{(c)}\right)^2 \omega_a m_a}{\omega^{(s)} M^{(s)}} \cdot h_a$$
(I.13)

となり,式(30)を得る.ここで, $\omega^{(s)}$ はs次モードの 固有円振動数, $M^{(s)}$ はs次のモード質量である. 参考文献

- Zhang, R.H. and Soong,T.T.: Seismic design of viscoelastic dampers for structural applications, *Journal* of Structural Engineering, Vol.118(5), pp.1375-1392, 1992.
- Tsuji, M. and Nakamura, T.: Optimum viscous dampers for stiffness design of shear building, *The Structural Design of Tall Building*, Vol.5, pp.217-234, 1996.
- Wu, B. and Ou, J.P.: Optimal placement of energy dissipation devices for three-dimensional structures, *Engineering Structures*, Vol.19(2), pp.113-125, 1997.
- Takewaki, I.: Optimal damper placement for minimum transfer functions, *Earthquake Engineering and Structural Dynamics*, Vol.26, pp.1113-1124, 1997.
- 5) Lang, Z. Q., Guo, P. F., Takewaki, I.: Output frequency response function based design of additional nonlinear viscous dampers for vibration control of multi-degree-of-freedom systems, *Journal of Sound and Vibration*, Vol.332(19), pp.4461-4481, 2013.
- Farhat, F., Nakamura, S and Takahashi, K.: Application of genetic algorithm to optimization of buckling restrained braces for seismic upgrading of existing structures, *Computers and Structures*, Vol.87, pp.110-119, 2009.
- Sonmez, M., Aydin, E. and Karabork, T.: Using an artificial bee colony algorithm for the optimal placement of viscous dampers in planar building frames, *Structural Multidisciplinary Optimizaiton*, Vol.48, pp.395-409, 2013.
- 8) 柴田明徳: 最新耐震構造解析, 森北出版, 1981.
- 日本道路協会:道路橋示方書・同解説(V耐震設計編),2002.
- 10) 茨木俊秀: 最適化の数学, 共立出版, 2011.
- 11) 日本道路協会: 道路橋の耐震設計における動 的解析に用いる加速度波形(H24 年版対応), https://www.road.or.jp/dl/tech.html.

(2016年9月26日受付) (2017年2月1日受理)