ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 学部学科区分一覧
  2. 工学部・工学研究科
  1. 資料タイプ一覧
  2. 会議資料

Wavelet Transform and Machine Learning-Based Biometric Authentication Using EEG Evoked by Invisible Visual Stimuli

https://repository.lib.tottori-u.ac.jp/records/7045
https://repository.lib.tottori-u.ac.jp/records/7045
ebaaa025-76d0-44ca-b1f0-7d0feeb8c060
名前 / ファイル ライセンス アクション
TENCON2020_Miyakle.pdf TENCON2020_Miyakle.pdf (1.5 MB)
Item type 会議発表論文 / Conference Paper(1)
公開日 2020-11-20
タイトル
タイトル Wavelet Transform and Machine Learning-Based Biometric Authentication Using EEG Evoked by Invisible Visual Stimuli
言語 en
言語
言語 eng
キーワード
主題 Biometric authentication, Invisible stimulation Machine Learning, Electroencephalogram (EEG), Wavelet Transform
Biometric authentication(en), Invisible stimulation Machine Learning(en), Electroencephalogram (EEG)(en), Wavelet Transform(en)
資源タイプ
資源タイプ conference paper
著者 中西, 功

× 中西, 功

WEKO 2512
e-Rad 80243377
研究者総覧鳥取大学 100000543

中西, 功

ja-Kana ナカニシ, イサオ

en Nakanishi, Isao

Search repository
Miyake, Takahiro

× Miyake, Takahiro

WEKO 26135

en Miyake, Takahiro

Search repository
Kinjo, Nozomu

× Kinjo, Nozomu

WEKO 26136

en Kinjo, Nozomu

Search repository
著者所属(英)
言語 en
値 Graduate School of Sustainability Sciences Tottori University
著者所属(英)
言語 en
値 Graduate School of Sustainability Sciences Tottori University
著者所属(英)
言語 en
値 Faculty of Engineering, Tottori University
抄録
内容記述タイプ Other
内容記述 In this study, we propose the authentication of individuals using electroencephalograms (EEGs) evoked by the application of invisible visual stimuli. In our previous study, we introduced a wavelet transform, which is a time-frequency analysis method, and applied it to extract features, including time information, to enable more accurate discrimination between individuals. An equal error rate (EER) of 9.4 % was achieved using Euclidean distance matching. In this paper, we introduce a machine learning-based approach in order to further improve the verification performance. An EER of 8.1 % is achieved by the proposed method after training the constituent neural networks using ensemble learning with 30 networks.
書誌情報 Proceedings of the 2020 IEEE Region 10 Conference (TENCON2020)
en : Proceedings of the 2020 IEEE Region 10 Conference (TENCON2020)

発行日 2020-11
権利
権利情報 © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collec
情報源
関連名称 T. Miyake, N. Kinjo, I.Nakanishi. Wavelet Transform and Machine Learning-Based Biometric Authentication Using EEG Evoked by Invisible Visual Stimuli. Proceedings of the 2020 IEEE Region 10 Conference (TENCON2020). 2020.
著者版フラグ
出版タイプ AM
戻る
0
views
See details
Views

Versions

Ver.1 2023-08-02 06:28:06.785404
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3