ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 学部学科区分一覧
  2. 工学部・工学研究科
  1. 資料タイプ一覧
  2. 会議資料

Correlation Analysis of Features for Fusing in User Verification Using EEG Evoked by Ultrasound

https://repository.lib.tottori-u.ac.jp/records/7054
https://repository.lib.tottori-u.ac.jp/records/7054
0130dfd5-772b-4808-8404-9f3b35ac20d6
名前 / ファイル ライセンス アクション
CANDARW2022_388.pdf CANDARW2022_388.pdf (376.7 kB)
Item type 会議発表論文 / Conference Paper(1)
公開日 2022-12-07
タイトル
タイトル Correlation Analysis of Features for Fusing in User Verification Using EEG Evoked by Ultrasound
言語 en
言語
言語 eng
キーワード
主題 biometrics, evoked brain wave, reduction of classifiers, statistical values of brain waves, support vector machine, ultrasound
biometrics(en), evoked brain wave(en), reduction of classifiers(en), statistical values of brain waves(en), support vector machine(en), ultrasound(en)
資源タイプ
資源タイプ conference paper
著者 中西, 功

× 中西, 功

WEKO 2512
e-Rad 80243377
研究者総覧鳥取大学 100000543

中西, 功

ja-Kana ナカニシ, イサオ

en Nakanishi, Isao

Search repository
Ishikawa, Yuta

× Ishikawa, Yuta

WEKO 26147

en Ishikawa, Yuta

Search repository
Mukai, Kotaro

× Mukai, Kotaro

WEKO 26148

en Mukai, Kotaro

Search repository
著者所属(英)
言語 en
値 Faculty of Engineering Tottori University
著者所属(英)
言語 en
値 School of Engineering Tottori University
著者所属(英)
言語 en
値 Graduate School of Sustainability Sciences Tottori University
抄録
内容記述タイプ Other
内容記述 In user verification using electroencephalograms (EEGs) evoked by ultrasound, an error rate of 0% was achieved. However, to achieve this, the classifiers for the number of features multiplied by the number of electrodes must be learned. Therefore, reducing the number of classifiers is crucial and must be achieved. This study confirmed that the random selection of features and electrodes facilitates further reduction in the number of classifiers. Random selection is equivalent to evenly selecting electrodes for each feature and electrode position. Consequently, the effectiveness of even selection was statistically confirmed. Furthermore, even selection resulted in the fusion of uncorrelated features. Thus, four statistical values of an EEG were introduced, and the effectiveness of fusing uncorrelated (independent) features was confirmed.
書誌情報 Proceedings of 2022 tenth International Symposium on Computing and Networking Workshops(CANDARW)
en : Proceedings of 2022 tenth International Symposium on Computing and Networking Workshops(CANDARW)

p. 388-391, 発行日 2022
出版者
出版者 IEEE
権利
権利情報 © 2022 IEEE.
情報源
関連名称 I Nakanishi, Y Ishikawa, K Mukai. Correlation Analysis of Features for Fusing in User Verification Using EEG Evoked by Ultrasound. Proceedings of 2022 tenth International Symposium on Computing and Networking Workshops(CANDARW). 2022, 388-391.
関連サイト
識別子タイプ URI
関連識別子 https://www.computer.org/csdl/proceedings/1829704
関連名称 https://www.computer.org/csdl/proceedings/1829704
著者版フラグ
出版タイプ AM
戻る
0
views
See details
Views

Versions

Ver.1 2023-08-02 06:27:53.454833
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3